DOI QR코드

DOI QR Code

Photocatalytic Activity of $TiO_2$ Powder with an Oxygen Deficiency in the Visible-Light Region

산소 결함형 $TiO_2$ 분말의 가시광에 대한 광촉매 활성

  • Yang, Chun-Hoe (Department of Chemical Engineering, Hanbat National University)
  • 양천회 (한밭대학교 공과대학 화학공학과)
  • Published : 2007.03.31

Abstract

It prepared the $TiO_2$ powder which has photo-catalytic activity in the visible-light by the wet process with titanium oxysulfate. The titanium $dioxide(TiO_2)$ by the wet process creates a new absorption band in the visible light region, and is expected to create photocatalytic activity in this region. Anatase $TiO_2$ powder which has photocatalytic activity in the visible light region, is treated using microwave and radio-frequency(RF) plasma. But, the $TiO_2$ powder for the visible light region, which also can be easily produced by wet process. The wet process $TiO_2$ absorbed visible light between 400nm and 600nm, and showed a high activity in this region, as measured by the oxidation removal of aceton from the gas phase. The AH-380 sample appears the yellow color to be strong, the catalytic activity in the visible ray was excellent in comparison with the plasma-treated $TiO_2$. The AH-380 $TiO_2$ powder, which can be easily produced on a large scale, is expected to have higher efficiency in utilizing solar energy than the plasma-treated $TiO_2$ powder.

Keywords

References

  1. S. J. Teichner and M. Forrnenti, Fundamemtals and Developments of Photocatalytic and Photoelectrochemical Processes, edited by M. Schiavello, NATO ASI Series, Series C, Vol.146, p.457 (1985)
  2. Y. J. Chung, W. H. Roo, and C. H. Yang, J of Korean Oil Chem. Soc., 21, 140 (2004)
  3. T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, and M. Matsumura, J Phys. Chem, 101, 6415 (1997) https://doi.org/10.1021/jp970436+
  4. M. Wakamura, K. Hashimoto, and T. Watanabe, Langmuir, 19, 3428 (2003) https://doi.org/10.1021/la0208169
  5. T. Suzuki and Y. Hayakawa, Proceedings of the International Congress on Phosphorus Compounds, IMPHOS, Paris, 381 (977)
  6. S. Sato, Chem. Phy. Lett., 123(1),(1986)
  7. K. Iseda, Bull. Chem Soc. Jpn. 64, 1160 (1991) https://doi.org/10.1246/bcsj.64.1160
  8. S. Ito, T. Ihara, Y. Miura and M. Kiboku, Proceeding of Proc. Fourth Annual Int. Conf. of Plasma Chern. and Technology, San Diego, U.S.A, November, 157 (1987)
  9. T. Ihara, Y. Iriyama, S. Sugihara, M. Ando, and M. Miyoshi, J of Mat. Sci, 36, 4201 (2001) https://doi.org/10.1023/A:1017929207882
  10. H. K. Klug and L. E. Alexander, X -ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley-Interscience, New York, 2nd ed., 687 (1973)
  11. K. Tanaka, M. F. V. Capulr, and T. Hisanage, Chem Phys. Lett. 187, 73 (1991) https://doi.org/10.1016/0009-2614(91)90486-S
  12. M. Jansen and H. P. Letschert, Nature, 404, 980 (2000) https://doi.org/10.1038/35010082
  13. J. Fang, L. Su, J.Wu, Y. Shen, and Z. Lu, New J Chem, 21, 839 (1997)
  14. D. C. Cronemeyer, Phys. Rev., 113, 1222 (1959) https://doi.org/10.1103/PhysRev.113.1222
  15. I Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, J of Molecular Catalysis A, 161, 205 (2000) https://doi.org/10.1016/S1381-1169(00)00362-9
  16. T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, and Y. Taga, Jpn J. Appl. Phys., 40(6A), part 2, 561 (2001) https://doi.org/10.1143/JJAP.40.L561
  17. H. Al-Ekabi and A. Safarzadeh-Amiril, Advanced Technology for Destructuon of Organic Pollutants by Photocatalysis, Toronto, Canada, June, 4 (1990)
  18. M. El-Maazawi, A. N. Finken, A. B. Nair, and V. H. Grassian, J of Catalysis, 191, 138 (2000) https://doi.org/10.1006/jcat.1999.2794

Cited by

  1. High-Performance Organic Thin-Film Transistors with Metal Bilayer Electrodes vol.27, pp.1, 2007, https://doi.org/10.12925/jkocs.2010.27.1.8