DOI QR코드

DOI QR Code

The Effect of Chlorinated Ethenes and Electron Donor on VC Dehalogenation Rate

염화에텐류 화합물 및 전자공여체가 VC 탈염소화 속도에 미치는 영향

  • Bae, Jae-Ho (Department of Environmental Engineering, Inha University) ;
  • Lee, Il-Su (School of Chemical, Bio, and Environmental Engineering, Oregon State University) ;
  • Park, Young-Koo (Department of Environmental Disaster Prevention Engineering, Kangwon National University) ;
  • Semprini, Lewis (School of Chemical, Bio, and Environmental Engineering, Oregon State University)
  • 배재호 (인하대학교 환경공학과) ;
  • 이일수 (오레곤주립대학교 화학생물환경공학과) ;
  • 박영구 (강원대학교 환경방재공학과) ;
  • Published : 2007.12.31

Abstract

Anaerobic reductive dehalogenation of perchloroethene (PCE) was studied with lactate as the electron donor in a continuously stirred tank reactor (CSTR) inoculated with a mixed culture previously shown to dehalogenate vinyl chloride (VC). cis-1,2- dichloroethene (cDCE) was the dominant intermediate at relatively long cell retention times (>56 days) and the electron acceptor to electron donor molar ratio (PCE:lactate) of 1:2. cDCE was transformed to VC completely at the PCE to lactate molar ratio of 1:4, and the final products of PCE dehalogenation were VC (80%) and ethene (20%). VC dehalogenation was inhibited by cDCE dehalogenation. Propionate produced from the fermentation of lactate might be used as electron donor for the dehalogenation. Batch experiments were performed to evaluate the effects of increased hydrogen, VC, and trichloroethene (TCE) on VC dehalogenation which is the rate-limiting step in PCE dehalogenation The addition of TCE increased the VC dehalogenaiton rate more than an increase in the $H_2$ concentration, which suggests that the introduction of TCE induces the production of an enzyme that can comtabolize VC.

Keywords

References

  1. J.J. Westrick, J. W. Mello, and R. F. J. Thomas, Groundwater supply survey, J. Am Water Works Assoc., 76(5), 52 (1984)
  2. C. Holliger, G. Schra, A. J. M. Stams, and A. J. B. Zehnder, A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth, Appl. Environ Microbiol., 59(9), 2991 (1993)
  3. P. L. McCarty, Breathing with chlorinated solvents, Science, 276, 1521 (1997) https://doi.org/10.1126/science.276.5318.1521
  4. D. M. Major, M. L. McMaster, E. E. Cox, E. A. Edwards, S. M. Dworatzek, E. R. Hendrickson, M. G. Starr, J. A. Payne, and L. W. Buonamici, Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethane. Enorion. Sci. Technol., 36, 5106 (2002) https://doi.org/10.1021/es0255711
  5. X. Maymo-Gatell, T. Anguish, and S. H. Zinder, Reductive dechlorination of chlorinated ethenes and 1,2 dichloroethane by 'Debalococcoides ethenogens' 195, Appl. Environ. Microbiol., 65(7), 3108 (1999)
  6. S. Yu and L. Semprini, Kinetics and modeling of reductive dechlorination at high PCE and TCE concentration. Biotech. Bioeng., 88(4), 451 (2004) https://doi.org/10.1002/bit.20260
  7. E. R. Hendrickson, J. A. Payne, R. M. Young, M. G. Starr, M. P. Perry, S. Fahnestock, D. E. Ellis, and R. C. Ebersole, Molecular analysis of Dehalacoccaides 16S ribosomal DNA from chloroethene contaminated sites through North America and Europe. Appl. Environ Microbiol., 68, 485 (2002) https://doi.org/10.1128/AEM.68.2.485-495.2002
  8. J. K. Magnuson, R. V. Stem, J. M. Gossett, S. J. Zinder, and D. R. Burris, Reductive dechlorination of tetrachloroethene to ethene by a two component enzyme pathway, Appl. Envron. Microbiol., 64(4), 1270 (1998)
  9. J. F. Furguson and J. M. H. Pietari, Anaerobic transformations and bioremediation of chlorinated solvents, Envrion. Pollut., 107, 209 (2000) https://doi.org/10.1016/S0269-7491(99)00139-6
  10. Federal Resister, Code of Federal Regulation, Protection of the Environment, Parts 141 & 142, pp. 46885-46904 (1985)
  11. D. E. Ellis, E. J. Lutz, J. M. Odom, R. J. Buchanan, C. L. Bartlett, M. D. Lee, M. R. Harkness, and K. A. Deweerd, Bioaugmentation for Accelerated In Situ Anaerobic Bioremediation, Environ Sci Technol. 34, 2254 (2000) https://doi.org/10.1021/es990638e
  12. M. R. Harkness, A. A. Bracco, M. J. Jr. Brennan, K. A. Deweerd, and J. L. Spivack, Use of bioaugmentation to stimulated complete reductive dechlorination of of trichloroethene in Dover soil columns, Envrion Sci. Technol., 33, 1100 (1999) https://doi.org/10.1021/es9807690
  13. J. Z. He, K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Loffler, Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium, Nature, 424, 62 (2003) https://doi.org/10.1038/nature01717
  14. D. E. Fennell, J. M. Gossett, and S. H. Zinder, Comparison of butyric acid, ethanol, lctic acid, and propionic acid as hydrogen donors for reductive dechlorination of tetrachloroethene, Envrion Sci. Technol., 31(3), 918 (1997) https://doi.org/10.1021/es960756r
  15. Y. Yang and P. L. McCarty, Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture, Envrion. Sci. Technol., 32, 3591 (1998) https://doi.org/10.1021/es980363n
  16. Y. Yang and P. L. McCarty, Biomass, oleate, and other possible substrates fro chloroethene reductive dehalogenation, Bioremediation Journal, 4(2), 125 (2000) https://doi.org/10.1080/10889860091114185
  17. S. Yu, M. E. Dolan and L. Semprini, Kinetics and inhibition of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol, 39, 195 (2005) https://doi.org/10.1021/es0496773
  18. S. Yu and L. Semprini, Comparison of trichloroethylene reductive dehalogenation by microbial communities stimuilated on silicon based organic compounds as slow release anaerobic substrates, Water Res., 36, 4985 (2002) https://doi.org/10.1016/S0043-1354(02)00222-1
  19. Yang, Y. and McCarty, P.L., 'Biologically enhanced dissolution of tetrachlorethene DNAPL,' Envirion. Sci. Technol., 34(22), 2979 (2000) https://doi.org/10.1021/es991410u
  20. J. M. Gossett, Measurement of Henry's law constants for $C_1$, $C_2$ chlorinated hydrocarbons, Envirion. Sci. Technol., 21(2), 202 (1987) https://doi.org/10.1021/es00156a012