Journal of Educational Research in Mathematics (대한수학교육학회지:수학교육학연구)
- Volume 17 Issue 2
- /
- Pages.163-177
- /
- 2007
- /
- 2288-7733(pISSN)
- /
- 2288-8357(eISSN)
Analysis of the Algebraic Generalization on the Mathematically Gifted Elementary School Students' Process of Solving a Line Peg Puzzle
초등수학영재들이 페그퍼즐 과제에서 보여주는 대수적 일반화 과정 분석
- Song, Sang-Hun (Gyeongin National University of Education) ;
- Yim, Jae-Hoon (Gyeongin National University of Education) ;
- Chong, Yeong-Ok (Gyeongin National University of Education) ;
- Kwon, Seok-Il (Gyeongin National University of Education) ;
- Kim, Ji-Won (Gyeongin National University of Education)
- Published : 2007.05.31
Abstract
Studies on mathematically gifted students have been conducted following Krutetskii. There still exists a necessity for a more detailed research on how these students' mathematical competence is actually displayed during the problem solving process. In this study, it was attempted to analyse the algebraic thinking process in the problem solving a peg puzzle in which 4 mathematically gifted students, who belong to the upper 0.01% group in their grade of elementary school in Korea. They solved and generalized the straight line peg puzzle. Mathematically gifted elementary school students had the tendency to find a general structure using generic examples rather than find inductive rules. They did not have difficulty in expressing their thoughts in letter expressions and in expressing their answers in written language; and though they could estimate general patterns while performing generalization of two factors, it was revealed that not all of them can solve the general formula of two factors. In addition, in the process of discovering a general pattern, it was confirmed that they prefer using diagrams to manipulating concrete objects or using tables. But as to whether or not they verify their generalization results using generalized concrete cases, individual difference was found. From this fact it was confirmed that repeated experiments, on the relationship between a child's generalization ability and his/her behavioral pattern that verifies his/her generalization result through application to a concrete case, are necessary.
이 연구는 일반화라는 대수적 사고 요소에 초점을 맞추어 대수적 상황으로 문제 해결이 가능하도록 구성하여 제시한 특정 과제에서 초등수학영재들이 보여주는 대수적 일반화 사고 과정을 분석하는 것을 목적으로 한다. 초등수학영재들은 자신의 생각을 문자식으로 표현하고 문자 언어를 활용하여 답안을 표현하는 데 어려움을 겪지는 않았기에 표를 통한 수치의 귀납적인 규칙을 찾기보다 다이어그램이나 관계식을 사용한 포괄적인 예를 통해 보다 일반적인 구조를 파악하려는 경향을 가지고 있었다. 그러나 잘 구조화된 스키마를 가진 아동이라도 개인적 특성에 따라서는 자신이 일반화한 결과를 특수한 경우에 적용시킴 봄으로써 자신의 결과를 검증하는 경향이 있음을 확인하였고, 이변수 일반화 과제의 경우는 비록 일반적 패턴을 추정할 수는 있을지라도 그것을 정당화하는 과정에서는 어려움을 겪고 있음도 확인하였다. 그리고 이를 바탕으로 한 수학영재교육에의 몇 가지 시사점을 논의하였다.
Keywords