A Comparative Study of 3D MT Modeling Methods

3차원 MT 모델링 기법의 비교 분석

  • Han, Nu-Ree (Dept. of Civil, Urban & Geosystem Eng., Seoul National University) ;
  • Nam, Myung-Jin (Dept. of Petroleum and Geosystems Eng., The University of Texas at Austin) ;
  • Kim, Hee-Joon (Dept. of Environmental Exploration Eng., Pukyong National University) ;
  • Song, Yoon-Ho (Korea Institute of Geoscience and Mineral Resources) ;
  • Suh, Jung-Hee (Dept. of Civil, Urban & Geosystem Eng., Seoul National University)
  • 한누리 (서울대학교 지구환경시스템공학부) ;
  • 남명진 ;
  • 김희준 (부경대학교 환경탐사공학과) ;
  • 송윤호 (한국지질자원연구원 지하수지열연구부) ;
  • 서정희 (서울대학교 지구환경시스템공학부)
  • Published : 2007.05.31

Abstract

This paper compares the characteristics of three different algorithms for three-dimensional (3D) magnetotelluric (MT) modeling. These methods are developed by Mackie et al. (1994), Sasaki (1999) and Nam et al. (2007). The first and second methods are based on the finite difference method (FDM), while the last one the finite-element method (FEM). MT responses, apparent resistivities and phases, for a COMMEMI 3D-2 model show a good agreement with integral equation solutions and only minor discrepancies are found over the anomalous bodies in the 3D model. The computation time of the two methods based on FDM is short and the static divergence correction contributes to speed up. The FEM modeling scheme is accurate but slow.

이 논문에서는 Mackie et al. (1994), Sasaki (1999) 및 Nam et al. (2007)이 개발한 3차원 자기지전류 탐사 모델링 알고리듬의 특징을 자세히 비교 분석하고자 한다. Mackie et al. (1994)과 Sasaki (1999)의 알고리듬은 유한차분법(FDM)에 기초한 반면, Nam et al. (2007)의 알고리듬은 변유한요소법(EFEM)에 기초하고 있다. 이들 세 가지 방법으로 COMMEMI 3D-2 모형의 해를 구하고 적분방정식법의 해와 비교하였으며, 또한 세 가지 격자에 대해 세 개 주파수에서 계산시간을 비교하였다. FDM에 기반을 둔 두 가지 기법에서는 EFEM을 이용하는 경우보다 빠른 시간에 해를 계산할 수 있으며 이때 계산된 겉보기비저항과 위상은 전체적으로 적분방정식법의 해와 잘 일치하였으며 이상체 근처에서만 작은 차이를 보인다. 한편 EFEM에 기초한 알고리듬도 비교적 합리적인 시간 내에 매우 정확한 해를 계산할 수 있으며 지형을 포함한 경우에도 해를 계산할 수 있는 장점이 있다.

Keywords

References

  1. 김희준, 남명진, 송윤호, 서정희, 2004, MT법의 3차원 모델링 개 관, 물리탐사, 7, 148-154
  2. 남명진, 2006, MT 탐사의 3차원 지형효과 분석 연구, 공학박사 학위논문, 서울대학교
  3. 이태종, Uchida, T., Sasaki, Y., 송윤호, 2003, 3차원 MT 역산에 서 정적효과의 특성 고찰, 물리탐사, 6, 199-206
  4. 이태종, 송윤호, Uchida, T., 2005, 포항 지열개발 지역 MT 탐사 자료의 2차원 및 3차원 해석, 한국지구시스템공학회지, 42, 297-307
  5. 양준모, 오석훈, 이덕기, 권병두, 윤용훈, 2003, 한반도 내의 전도 성 구조를 고려한 3차원 지자기 모델링 및 차이 지시자의 적용, 한국지구과학회지, 24, 440-448
  6. Avdeev, D. B., 2005, Three-dimensional electromagnetic modeling and inversion from theory to application, Surveys in Geophysics, 26, 767-799 https://doi.org/10.1007/s10712-005-1836-x
  7. Jin, J., 2002, The finite element method in electromagnetics, 2nd ed., John Wiley & Sons
  8. Li, Y., and Spitzer, K., 2002, Three-dimensional DC resistivity forward modeling using finite elements in comparison with finite-difference solutions, Geophys. J. Int., 151, 924-934 https://doi.org/10.1046/j.1365-246X.2002.01819.x
  9. Mackie, R. L., Madden, T. R., and Wannamaker, P. E., 1993, Three-dimensional magnetotelluric modeling using difference equations: Theory and comparisons to integral equation solutions, Geophysics, 58, 215-226 https://doi.org/10.1190/1.1443407
  10. Mackie, R. L., Smith, J. T., and Madden, T. R., 1994, Threedimensional electromagnetic modeling using finite difference equations: The magnetotelluric example, Radio Science, 29, 923-935 https://doi.org/10.1029/94RS00326
  11. Mitsuhata, Y. and Uchida, T., 2004, 3D magnetotelluric modeling using the T- finite element method, Geophysics, 69, 108-119 https://doi.org/10.1190/1.1649380
  12. Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., Son, J. S., and Suh, J. H., 2007, 3D magnetotelluric modelling including surface topography, Geophysical Prospecting, 55, 277-287 https://doi.org/10.1111/j.1365-2478.2007.00614.x
  13. Nedelec, J. C., 1980, Mixed finite elements in R3, Numr. Math., 35, 315-341 https://doi.org/10.1007/BF01396415
  14. Newman, G. A., Recher, S., Tezkan, B., and Neubauer, F. M., 2003, 3D inversion of a scalar radio magnetotelluric field data set, Geophysics, 68, 791-802 https://doi.org/10.1190/1.1581032
  15. Rodi, W., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics, 66, 174-187 https://doi.org/10.1190/1.1444893
  16. Sasaki, Y., 1999, Three-dimensional frequency-domain electromagnetic modeling using the finite-difference method, Butsuri Tansa, 52, 421-431. (in Japanese with English abstract)
  17. Sasaki, Y., and Uchida, T., 2001, Application of 3-D magnetotelluric inversion to real data with static shifts, Proceedings of the 105th SEGJ Symposium, 234-237. (in Japanese)
  18. Siripunvaraporn, W., Egbert, G., and Lenbury, Y., 2002, Numerical accuracy of magnetotelluric modeling: A comparison of finite difference approximations, Earth Planets Space, 54, 721-725 https://doi.org/10.1186/BF03351724
  19. Smith, J. T., 1996, Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator, Geophysics, 61, 1319-1324 https://doi.org/10.1190/1.1444055
  20. Smith, R., and Paine, J., 1999, Three-dimensional transient electromagnetic modeling - A user's view, in Oristaglio, M., and Spies, B., Ed., Three-Dimensional Electromagnetics, Soc. Expl. Geophys., 1-25
  21. Sugeng, F., Raiche, A., and Xiong, Z., 1999, An edge-element approach to model the 3D EM response of complex structures with high contrasts, Proc. 3-D EM II, 25-28
  22. Uchida, T., Lee, T. J., Sasaki, Y., Honda, M., Andan, A., and Andan, A., 2001, Three-dimensional inversion of magnetotelluric data at the Bajawa geothermal field, eastern Indonesia, SEG expanded abstracts, 20, 1497-1500 https://doi.org/10.1190/1.1816390
  23. Wannamaker, P. E., 1991, Advances in three-dimensional magnetotelluric modeling using integral equations, Geophysics, 56, 1716-1728 https://doi.org/10.1190/1.1442984
  24. Xiong, Z., 1992, Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations, Geophysics, 57, 1556-1561 https://doi.org/10.1190/1.1443223
  25. Xiong, Z., Raiche, A., and Sugeng, F., 1999, Efficient solutions of full domain 3-D electromagnetic modeling problems, Proc. 3-D EM II, 3-7
  26. Yee, K. S., 1966, Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media, IEEE Trans. Anten. Prop., AP-14, 302-307
  27. Zhdanov, M. S., Varentsov, I. M., Weaver, J. T., Golubev, N. G., and Krylov, V. A., 1997, Methods for modeling electromagnetic fields. Results from COMMEMI-th international project on the comparison of modeling methods for electromagnetic induction, J. Applied Geophys., 37, 133-271 https://doi.org/10.1016/S0926-9851(97)00013-X