DOI QR코드

DOI QR Code

Analytical model for transfer length prediction of 13 mm prestressing strand

  • Marti-Vargas, J.R. (Department of Construction Engineering and Civil Engineering Projects, School of Civil Engineering, Polytechnic University of Valencia) ;
  • Arbelaez, C.A. (Department of Construction Engineering and Civil Engineering Projects, School of Civil Engineering, Polytechnic University of Valencia) ;
  • Serna-Ros, P. (Department of Construction Engineering and Civil Engineering Projects, School of Civil Engineering, Polytechnic University of Valencia) ;
  • Navarro-Gregori, J. (Department of Construction Engineering and Civil Engineering Projects, School of Civil Engineering, Polytechnic University of Valencia) ;
  • Pallares-Rubio, L. (Department of Construction Engineering and Civil Engineering Projects, School of Civil Engineering, Polytechnic University of Valencia)
  • Received : 2006.02.17
  • Accepted : 2006.11.20
  • Published : 2007.05.30

Abstract

An experimental investigation to determine the transfer length of a seven-wire prestressing strand in different concretes is presented in this paper. A testing technique based on the analysis of bond behaviour by means of measuring the force supported by the prestressing strand on a series of specimens with different embedment lengths has been used. An analytical bond model to calculate the transfer length from an inelastic bond stress distribution along the transfer length has been obtained. A relationship between the plastic bond stress for transfer length and the concrete compressive strength at the time of prestress transfer has been found. An equation to predict the average and both the lower bound and the upper bound values of transfer length is proposed. The experimental results have not only been compared with the theoretical prediction from proposed equations in the literature, but also with experimental results obtained by several researchers.

Keywords

References

  1. ACI (1963), Building Code Requeriments for Reinforced Concrete (ACI 318-63), American Concrete Institute, Detroit, MI
  2. ACI (2005), Building Code Requeriments for Reinforced Concrete (ACI 318-05), American Concrete Institute, Fannington Hills. MI
  3. AENOR (1997), UNE 36094: Alambres y cordones de acero para armaduras de hormigon pretensado, Asociacion Espanola de Normalizacion y Certificacion, Madrid. (spanish text)
  4. Balazs, G. (1992), 'Transfer control of prestressing strands', PCI J., 37(6), 60-71 https://doi.org/10.15554/pcij.11011992.60.71
  5. Balazs, G. (1993) 'Transfer length of prestressing strand as a function of draw-in and inicial prestress', PCI J., 38(2), 86-93 https://doi.org/10.15554/pcij.03011993.86.93
  6. Barnes, R.W., Grove, J.W. and Burns, N.H. (2003), 'Experimental assessment of factors affecting transfer length', ACI Struct. J., 100(6), 740-748
  7. Brearley, L.M. and Johnston, D.W. (1990), 'Pull-out bond tests of epoxy-coated prestressing strand', J. Struct. Eng., ASCE, 116(8), 2236-2252 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:8(2236)
  8. Bruggeling, A.S.G. and Huyghe, G.F. (1991), Prefabrication with Concrete, Ed. A.A. Balkema/Rotterdam/Brookfield, Netherlands
  9. Buckner, C.D. (1995), 'A review of strand development length for pretensioned concrete members', PCI J., 40(2),84-105 https://doi.org/10.15554/pcij.03011995.84.105
  10. CEB (1987), Anchorage Zones of Prestressed Concrete Members, Bulletin d'Infonnation $N^\circ$181, Comite EuroInternational du Beton, Lausanne, Switzerland
  11. CEB-FIP (1990), CEB-FIP Model Code 1990 (MC90), Bulletin d'Infonnation $n^\circ$ 213/214, Comite EuroInternational du Beton and Federation Internationale de la Precontrainte, Lausanne, Switzerland
  12. CEN (1991), Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, European prestandard ENV 1992-1-1: 1991, Comite Europeen de Nonnalisation, Brussels, Belgium
  13. CEN (2000), Cement. Part 1: Compositions, Specifications and Conformity Criteria for Common Cements, European standard EN 197-1:2000, Comite Europeen de Nonnalisation, Brussels, Belgium
  14. CEN (2004), Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, European standard EN 1992-1-1 :2004:E, Comite Europeen de Nonnalisation, Brussels, Belgium
  15. Chen, H. and Wissawapaisal, K. (2001), 'Measurement of tensile forces in a seven-wire prestressing strand using stress waves', J. Eng Mech., ASCE, June, 599-606
  16. Cousins, Th. E., Johnston, D.W. and Zia, P. (1990), 'Transfer and development length of epoxy-coated and uncoated prestressing strand', PCI J., 35(4), 92-103 https://doi.org/10.15554/pcij.07011990.92.103
  17. Deatherage, J.H., Burdette, E. and Chew, Ch.K. (1994), 'Development length and lateral spacing requirements of prestressing strand for prestressed concrete bridge girders', PCI J., 39(1), 70-83
  18. den Uijl, J.A. (1998), Bond Modelling of Prestressing Strand. Bond and development of reinforcement, SP 180-7, ACI International, Farmington Hills. MI
  19. Evans, R.H. and Robinson, W.R. (1955), 'Bond stresses in prestressed concrete from x-ray photographs', P. I. Civil Eng PT l, 6(14), 212-235
  20. FIB (2000), Bond of Reinforcement in Concrete. State of the Art Report, Bulletin d'Information $n^\circ$ 10, Federation Internationale du Beton, Lausanne, Switzerland
  21. Fu, X. and Chung, D.D.L. (1998), 'Effects of water-cement ratio, curing age, silica fume, polymer admixtures, steel surface treatments, and corrosion on bond between concrete and steel reinforcing bars', ACI Mater. J., 95(6), 725-734
  22. Guyon, Y. (1953), Beron precontrainte. Etude theorique et experimentale, Ed. Eyrolles, Paris, France
  23. Janney, J. (1954), 'Nature of bond in pretensioned prestressed concrete', ACI J., 25(9), 717-737
  24. Linger, D.A. and Bhonsle, S.R. (1963), 'An investigation of transfer length in pretensioned concrete using photoelasticity', PCI J., 8(4), 13-30 https://doi.org/10.15554/pcij.08011963.13.30
  25. Mahmoud, Z.I., Rizkalla, S.H. and Zaghloul, E.R. (1999), 'Transfer and development lengths of carbon fiber reinforcement polymers prestressing reinforcing', ACl Struct. J., 96(4), 594-602
  26. Marti, J.R. (2003), Experimental Study on Bond of Prestressing Strand in High-strength Concrete, PhD Thesis, Polytechnic University of Valencia, ProQuest Information and Learning Company, UMI Number 3041710, MI. (spanish text)
  27. Marti-Vargas, J.R., Serna-Ros, P., Femandez-Prada, M.A., Miguel-Sosa, P.F. and Arbelaez, C.A. (2006), 'Test method for determination of the transmission and anchorage lengths in prestressed reinforcement', Mag. Concrete Res., 58(1), 21-29 https://doi.org/10.1680/macr.2006.58.1.21
  28. Mitchell, D., Cook, W.D., Khan, A. and Tham, T. (1993), 'Influence of high strength concrete on transfer and development length ofpretensioning strand', PCI J., 38(3), 52-66
  29. Nanni, A., Utsunomiya, T., Yonekura, H. and Tanigaki, M. (1992), 'Transmission of prestressing force to concrete by bonded fiber reinforced plastic tendons', ACl Struct. J., 89(3), 335-344
  30. Nijhawam, J.C. (1978), Discussion of 'Development length ofprestressing strand', PCI J., 23(4), 97-107
  31. Olesniewicz, A. (1975), Statistical Evaluation of Transmission Length of Strand, Research and design Centre for Industrial Building (BISTYP), Varsaw, Poland
  32. Ratz, E.H., Holmjanski, M.M. and Kolner, V.M. (1958), 'The trasnsmission of prestress to concrete by bond', Proceedings of '58 Federation 1nternationale de la Precontrainte Congress, Berlin, 624-640
  33. Russell, B.W and Burns, N.H. (1996), 'Measured transfer lengths of 0.5 and 0.6 in. strands in pretensioned concrete', PCI J., 41(5), 44-65
  34. Shahawy, M. (2001), 'A critical evaluation of the AASHTO provisions for strand development length of prestressed concrete members', PCI J., 46(4), 94-117 https://doi.org/10.15554/pcij.07012001.94.117
  35. Shahawy, M., Moussa, I. and Batchelor, B. (1992), 'Strand transfer lengths in full scale aashto prestressed concrete girders', PCI J., 37(3), 84-96
  36. Tabatabai, H. and Dickson, Th. (1993), 'The history of the prestressing strand development length equation', PCI J., 38(5), 64-75
  37. Tadros, M.K. and Baishya, M.C (1996), Discussion of 'A review of strand development length for pretensioned concrete members', PCI J., 41(2), 112-127
  38. Thorsen, N. (1956), 'Use of large tendons in pretensioned concrete', ACI J., Feb., 649-659
  39. Zia, P. and Mostafa, T. (1977), 'Development length of prestressing strands', PCI J., 22(5), 54-65 https://doi.org/10.15554/pcij.09011977.54.65

Cited by

  1. A higher-order equation for modeling strand bond in pretensioned concrete beams vol.131, 2017, https://doi.org/10.1016/j.engstruct.2016.10.050
  2. Predicting Strand Transfer Length in Pretensioned Concrete: Eurocode versus North American Practice vol.18, pp.12, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000456
  3. Predicting bond formulations for prestressed concrete elements vol.97, 2015, https://doi.org/10.1016/j.engstruct.2015.04.013
  4. Correlation of Strand Surface Quality to Transfer Length vol.111, pp.5, 2014, https://doi.org/10.14359/51686925
  5. Effects of confinement and concrete nonlinearity on transfer length of prestress in concrete vol.11, 2017, https://doi.org/10.1016/j.istruc.2017.04.002
  6. Prestress losses evaluation in prestressed concrete prismatic specimens vol.48, 2013, https://doi.org/10.1016/j.engstruct.2012.11.038
  7. Prediction of the transfer length of prestressing strands with neural networks vol.12, pp.2, 2013, https://doi.org/10.12989/cac.2013.12.2.187
  8. Discussion of “Development Length Tests of Full-Scale Prestressed Self-Consolidating Concrete Box and I-Girders” by Bassem Andrawes, Andrew Pozolo, and Zhe Chen vol.20, pp.4, 2015, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000703
  9. Discussion: Pull-out and push-in tests of bonded steel strands vol.65, pp.18, 2013, https://doi.org/10.1680/macr.13.00061
  10. Strand bond performance in prestressed concrete accounting for bond slip vol.51, 2013, https://doi.org/10.1016/j.engstruct.2013.01.023
  11. Discussion of “Efficient Prestressed Concrete-Steel Composite Girder for Medium-Span Bridges. II: Finite-Element Analysis and Experimental Investigation” by Yaohua Deng and George Morcous vol.20, pp.6, 2015, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000711
  12. Time-dependent evolution of strand transfer length in pretensioned prestressed concrete members vol.17, pp.4, 2013, https://doi.org/10.1007/s11043-012-9200-2
  13. Effects of concrete composition on transmission length of prestressing strands vol.27, pp.1, 2012, https://doi.org/10.1016/j.conbuildmat.2011.07.038
  14. Discussion of “Performance of an AASHTO Beam Bridge Prestressed with CFRP Tendons” by Nabil Grace, Elin Jensen, Vasant Matsagar, and Prasadu Penjendra vol.19, pp.3, 2014, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000504
  15. Effect of concrete compressive strength on transfer length vol.5, 2016, https://doi.org/10.1016/j.istruc.2015.10.006
  16. Development Length Tests of Full-Scale Prestressed Self-Consolidating Concrete Box and I-Girders vol.18, pp.11, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000363
  17. Influence of concrete composition on anchorage bond behavior of prestressing reinforcement vol.48, 2013, https://doi.org/10.1016/j.conbuildmat.2013.07.102
  18. Slip distribution model along the anchorage length of prestressing strands vol.59, 2014, https://doi.org/10.1016/j.engstruct.2013.11.032
  19. Experimental Technique for Measuring the Long-term Transfer Length in Prestressed Concrete vol.49, pp.2, 2013, https://doi.org/10.1111/str.12019
  20. Transfer length of 2400 MPa seven-wire 15.2 mm steel strands in high-strength pretensioned prestressed concrete beam vol.17, pp.4, 2016, https://doi.org/10.12989/sss.2016.17.4.577
  21. Measured Transfer Lengths of 0.7 in. Strands for Pretensioned Beams vol.113, pp.1, 2016, https://doi.org/10.14359/51687941
  22. Measuring specific parameters in pretensioned concrete members using a single testing technique vol.49, 2014, https://doi.org/10.1016/j.measurement.2013.12.007
  23. Bond Behavior of Pretensioned Strand Embedded in Ultra-High-Performance Fiber-Reinforced Concrete vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0249-4
  24. Modelos de transferencia del pretensado: análisis comparativo vol.65, pp.272, 2007, https://doi.org/10.1016/s0439-5689(14)70002-6
  25. Transfer length in full-scale pretensioned concrete beams with 1.4 m and 2.4 m section depths vol.171, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.05.104
  26. Development and application of a hybrid prestressed segmental concrete girder utilizing low carbon materials vol.69, pp.4, 2007, https://doi.org/10.12989/sem.2019.69.4.371
  27. Transmission length of pretensioned concrete systems - comparison of codes and test data vol.71, pp.17, 2019, https://doi.org/10.1680/jmacr.17.00553
  28. Effect of Elevated Temperature on the Bond Strength of Prestressing Reinforcement in UHPC vol.13, pp.21, 2020, https://doi.org/10.3390/ma13214990