DOI QR코드

DOI QR Code

GROUP DETERMINANT FORMULAS AND CLASS NUMBERS OF CYCLOTOMIC FIELDS

  • Jung, Hwan-Yup (DEPARTMENT OF MATHEMATICS EDUCATION CHUNGBUK NATIONAL UNIVERSITY) ;
  • Ahn, Jae-Hyun (DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY)
  • Published : 2007.05.31

Abstract

Let m, n be positive integers or monic polynomials in $\mathbb{F}_q[T]$ with n|m. Let $K_m\;and\;K^+_m$ be the m-th cyclotomic field and its maximal real subfield, respectively. In this paper we define two matrices $D^+_{m,n}\;and\;D^-_{m,n}$ whose determinants give us the ratios $\frac{h(\mathcal{O}_{K^+_m})}{h(\mathcal{O}_{K^+_n})}$ and $\frac{h-(\mathcal{O}_K_m)}{h-(\mathcal{O}_K_n)}$ with some factors, respectively.

Keywords

References

  1. J. Ahn, S. Choi, and H. Jung, Class number formulas in the form of a product of determinants in function fields, J. Aust. Math. Soc. 78 (2005), no. 2, 227-238 https://doi.org/10.1017/S1446788700008053
  2. S. Galovich and M. Rosen, Units and class groups in cyclotomic function fields, J. Number Theory 14 (1982), no. 2, 156-184 https://doi.org/10.1016/0022-314X(82)90045-2
  3. K. Girstmair, A recursion formula for the relative class number of the -th cyclotomic field, Abh. Math. Sem. Univ. Hamburg 61 (1991), 131-138 https://doi.org/10.1007/BF02950757
  4. H. J ung and J. Ahn, Demjanenko matrix and recursion formula for relative class number over function fields, J. Number theory 98 (2003), no. 1, 55-66 https://doi.org/10.1016/S0022-314X(02)00023-9
  5. H. Jung, S. Bae, and J. Ahn, Determinant formulas for class numbers in function fields, Math. Comp. 74 (2005), no. 250, 953-965 https://doi.org/10.1090/S0025-5718-04-01671-0
  6. R. Kucera, Formulae for the relative class number of an imaginary abelian field in the form of a determinant, Nagoya Math. J. 163 (2001), 167-191 https://doi.org/10.1017/S0027763000007959
  7. M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365-378
  8. M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York, 2002
  9. L. Washington, Introduction to cyclotomic fields. Second edition, Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997
  10. L. Yin, On the index of cyclotomic units in characteristic p and its applications, J. Number Theory 63 (1997), no. 2, 302-324 https://doi.org/10.1006/jnth.1997.2111
  11. L. Yin, Distributions on a global field, J. Number Theory 80 (2000), no. 1, 154-167 https://doi.org/10.1006/jnth.1999.2440
  12. L. Yin, Stickelberger ideals and relative class numbers in function fields, J. Number Theory 81 (2000), no. 1, 162-169 https://doi.org/10.1006/jnth.1999.2472

Cited by

  1. ON THE RATIO OF RELATIVE CONGRUENCE ZETA FUNCTIONS OF CYCLOTOMIC FUNCTION FIELDS vol.29, pp.1, 2016, https://doi.org/10.14403/jcms.2016.29.1.117