Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame

메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과

  • Park, Jeong (School of Mechanical Engineering, Pukyong National University) ;
  • Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials) ;
  • Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
  • 박정 (부경대학교 기계공학부) ;
  • 길상인 (한국기계연구원 환경에너지기계연구본부) ;
  • 윤진한 (한국기계연구원 환경에너지기계연구본부)
  • Published : 2007.06.15

Abstract

Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

Keywords

References

  1. R. W. Schefer, D. M. Wicksall, and A. K. Agrawal, 'Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner', Proc. of the Combustion Institute, Vol. 29, 2002, pp. 843-851
  2. C. G. Bauer and T. W. Forest, 'Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on SI engine performance', Int J Hydrogen Energy, Vol. 26, 2001, pp. 135-140
  3. C. K. Law and O. C. Kwon, 'Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation', Int J Hydrogen Energy, Vol. 29, 2004, pp. 867-879 https://doi.org/10.1016/j.ijhydene.2003.09.012
  4. M. Ilbas, A. P. Crayford, I. Yilmaz, P. J. Bowen, and N. Syred, 'Laminar-burning velocities of hydrogen-air and hydrogen -methane-air mixtures: An experimental study', Int J Hydrogen Energy, Vol. 31, 2006, pp. 1768-1779 https://doi.org/10.1016/j.ijhydene.2005.12.007
  5. J-Y. Ren, W. Qin, F. N. Egolfopoulos, and T. T. Tsotsis, 'Strain-rate Effects on hydrogen -enhanced lean premixed combustion', Combust Flame, Vol. 124, 2001, pp. 717-720 https://doi.org/10.1016/S0010-2180(00)00205-4
  6. S. O. Bade Shresha and G. A. Karim, 'An investigation of the addition of dissociates water products to a gas fueled spark ignition engines', Int J Hydrogen Energy, Vol. 24, 1999, pp. 577-586 https://doi.org/10.1016/S0360-3199(98)00103-7
  7. R. J. Kee, J. A. Miller, G. H. Evans; and G. Dixon-Lewis, 'A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flame,' Proc. Comb. Institut. Vol. 22, 1988, p. 1479
  8. A. E. Lutz, R. J. Kee, J. F. Grcar and F. M. Rupley, 'A fortran program for computing opposed-flow diffusion flames', 1997, SAND 96-8243
  9. Y. Ju, H. Guo, K. Maruta, and F. Liu, 'On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames', J Fluid Mech., Vol. 342, 1997, p. 315 https://doi.org/10.1017/S0022112097005636
  10. R. J. Kee, F. M. Rupley, and J. A. Miller, 'Chemkin II: A fortran chemical kinetics package for analysis of gas phase chemical kinetics', SAND 89-8009B
  11. R. J. Kee, G. Dixon-Lewis, J. Wamatz, M. E. Coltrin, and J. A. Miller, 'A fortran computer code package for the evaluation of gas-phase multi-component transport', 1994, SAND 86-8246
  12. H. K. Chellian, C. K. Law, T. Ueda, M. D. Smooke, and F. A. Williams, 'An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames', Proc. Comb. Institut., Vol. 23, 1990, p. 503
  13. G. P. Smith, D. M. Golden, N. W. Frenklach, M. B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Dong, W. C. Gardiner, Jr.-VV. Lissianski, and Z. Qin, 'The 'GRl-Mech 3.0' chemical kinetic mechanism,' , 2007
  14. C. K. Westbrook and F. L. Dryer, 'Chemical kinetic modeling of hydrocarbon combustion', Prog Energy Combust Sci., 10, 1984, pp. 1-57 https://doi.org/10.1016/0360-1285(84)90118-7
  15. M. Nishioka, S. Nakagawa, Y. Ishikawa, and T. Takeno, 'NO emission characteristics of methane-air double flame', Combust. Flame, Vol. 98, 1994, pp. 127-36 https://doi.org/10.1016/0010-2180(94)90203-8
  16. J. A. Miller and C. T. Bowman, 'Mechanism and modeling of nitrogen chemistry III combustion', Prog. Energy Combust Sci., Vol. 15, 1989, p. 287 https://doi.org/10.1016/0360-1285(89)90017-8