References
- Akaike, A., Mine, Y., Sasa, M. and Takaori, S. (1990). Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J. Pharmacol. Expt. Ther. 255, 333-339
- Anton, A. H. and Sayre, D. F. (1962). A study of the factors affecting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375
- Aguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A. and Bryan, J. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78, 227-245 https://doi.org/10.1152/physrev.1998.78.1.227
- Asano, M., Masuzawa-Ito, K. and Matsuda, T. (1994). Vasodilating actions of cromakalim in resting and contracting states of carotid arteries from spontaneously hypertensive rats. European J. Pharmacol. 263, 121-131 https://doi.org/10.1016/0014-2999(94)90532-0
- Ashcroft, F. M. (1988). Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 763-770
- Ashford, M. L. J., Sturgess, N. C., Trout, N. J., Gardner, N. J. and Hales, C. N. (1988). Adenosine 5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 412, 297-304 https://doi.org/10.1007/BF00582512
- Benndorf, K., Thierfelder, S., Doepner, B., Gebhardt, C. and Hirche, H. (1997). Role of cardiac K-ATP channels during anoxia and ischemia. News Physiol. Sci. 12, 78-83
- Burgoyne, R. D. (1984). Mechanism of secretion from adrenal chromaffin cells. Biochem. Biophys. Acta. 779, 201-216 https://doi.org/10.1016/0304-4157(84)90009-1
- Cena, V., Nicolas, G. P., Sanchez-Garcia, P., Kirpekar, S. M. and Garcia, A. G. (1983). Pharmacological dissection of receptorassociated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience 10, 1455-1462 https://doi.org/10.1016/0306-4522(83)90126-4
- Challiss, R. A. J., Jones, J. A., Owen, P. J. and Boarder, M. R. (1991). Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56, 1083-1086 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
-
Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989). Spatial localization of the stimulus-induced rise in cytosolic
$Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett. 247, 429-434 https://doi.org/10.1016/0014-5793(89)81385-7 - Cook, N. S. (1988). The pharmacology of potassium channel and their therapeutic potential. Trends Pharmacol. Sci. 9, 21-28 https://doi.org/10.1016/0165-6147(88)90238-6
- Corcoran, J. J. and Kirshner, N. (1983). Inhibition of calcium uptake, sodium uptake, and catecholamine secretion by methoxyverapamil (D600) in primary cultures of adrenal medulla cells. J. Neurochem. 40, 1106-1109 https://doi.org/10.1111/j.1471-4159.1983.tb08099.x
- Edwards, G., Duty, S., Trezise, D. J. and Weston, A. H. (1992). Effects of potassium-channel modulators on the cardiovascular system. In Potassium channel modulators: Phamacological, molecular and clinical aspects (A. H. Weston, T. C. Hamilton, Ed.), pp. 369-463. Blackwell Science, Oxford
- Endoh, M. and Taira, N. (1983). Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 319 https://doi.org/10.1007/BF00508349
- Finta, E. P., Harms, L., Sevick, J., Fischer, H. D. and Illes, P. (1993). Effects of potassium channel openers and their antagonists on rat locus coerulus neurones. Br. J. Pharmacol. 109, 308-315 https://doi.org/10.1111/j.1476-5381.1993.tb13571.x
- Furukawa, K., Itoh, I., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. (1981). Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218, 260
- Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R. and Gandia, L. (1984). Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69-71 https://doi.org/10.1038/309069a0
-
Goeger, D. E. and Riley, R. T. (1989). Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on
$Ca^{2+}$ binding and$Ca^{2+}$ permeability. Biochem. Pharmacol. 38, 3995-4003 https://doi.org/10.1016/0006-2952(89)90679-5 - Hamilton, T. and Weston, A. (1989). Cromakalim, nicorandil and pinacidil: novel drugs which open potassium channels in smooth muscle. Gen. Pharmacol. 20, 1-9 https://doi.org/10.1016/0306-3623(89)90052-9
-
Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes:
$M_1$ and$M_2$ biochemical and functional characterization. Life Sci. 31, 2992-2998 - Heldman, E., Levine, M., Rabeh, L. and Pollard, H. B. (1989). Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J. Biol. Chem. 264, 7914-7920
- Holzmann, S. (1983). cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. Cardiovasc. Pharmacol. 5, 364-370 https://doi.org/10.1097/00005344-198305000-00004
- Holzmann, S., Kukovetz, W. R., Braida, C. and Poch, G. (1992). Pharmacological interaction experiments differentiate between glibenclamide-sensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur. J. Pharmacol. 215, 1-7 https://doi.org/10.1016/0014-2999(92)90600-9
- Ilno, M. (1989). Calcium-induced calcium release mechanism in guinea pig taenia caeci. J. Gen. Physiol. 94, 363-383 https://doi.org/10.1085/jgp.94.2.363
- Kukovetz, W. R., Holzmann, S., Braida C. and Poch, G. (1991). Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J. Cardiovasc. Pharmacol. 17, 627-633 https://doi.org/10.1097/00005344-199104000-00016
- Ladona, M. G., Aunis, D., Gandia, A. G. and Garcia, A. G. (1987). Dihydropyridine modulation of the chromaffin cell secretory response. J. Neurochem. 48, 483-490 https://doi.org/10.1111/j.1471-4159.1987.tb04118.x
- Lim, D. Y. and Hwang, D. H. (1991). Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27, 53-67
- Lim, D. Y., Kim, C. D. and Ahn, K. W. (1992). Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15, 115-125 https://doi.org/10.1007/BF02974085
- Lim, D. Y., Park, G. H. and Park, S. H. (2000). Inhibitory mechanism of pinacidil on catecholamine secretion from the rat perfused adrenal gland evoked by cholinergic stimulation and membrane depoialrization. J. Auton. Pharmacol. 20, 123-132 https://doi.org/10.1046/j.1365-2680.2000.00171.x
- Masuda, Y., Yoshizumi, M., Ishimura, Y., Katoh, I. and Oka, M. (1994). Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells. Biochem. Pharmacol. 47, 1751-1758 https://doi.org/10.1016/0006-2952(94)90302-6
-
Meisheri, K. D., Cipkus-Dubray, L. A., Hosner J. M. and Khan, S. (1991). Nicorandil-induced vasorelaxation: Functional evidence for
$K^+$ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J. Cardiovasc. Pharmacol. 17, 903 https://doi.org/10.1097/00005344-199106000-00007 - Murphy, K. P. and Greenfield, S. A. (1992). Neuronal selectivity of ATP-sensitive potassium channels in guinea-pig substantia nigra revealed by responses to anoxia. J. Physiol. (Lond) 453, 167-183 https://doi.org/10.1113/jphysiol.1992.sp019222
- Noma, A. (1983). ATP-regulated single K channels in cardiac muscle. Nature 305, 147-148 https://doi.org/10.1038/305147a0
- Oka, M., Isosaki, M. and Yanagihara, N. (1979). Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In Catecholamines: Basic and Clinical frontiers (E. Usdin, I. J. Kopin, J. Brachas, Ed.), pp. 70-72. Pergamon Press, Oxford
- Perez-Vizcaino, F., Casis, O., Rodriguez, R., Comez, L. A., Garcia Rafanell, J. and Tamargo, J. (1993). Effect of the novel potassium channel opener, UR-8225, on contractile responses in rat isolated smooth muscle. Br. J. Pharmacol. 110, 1165-1171 https://doi.org/10.1111/j.1476-5381.1993.tb13936.x
- Petersen, O. H. and Maruyama, Y. (1984). Calcium-activated potassium channels and their role in secretion. Nature 307, 693-696 https://doi.org/10.1038/307693a0
-
Pierrefiche, O., Bischoff, A. M. and Richter, D. W. (1996). ATP-sensitive
$K^{+}$ channels are functional in expiratory neurones of normoxic cats. J. Physiol. (Lond) 494, 399-409 - Quast, U. and Cook, N. S. (1989). Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol. Sci. 10, 431-435 https://doi.org/10.1016/S0165-6147(89)80003-3
-
Schmid-Antomarchi, H., Amoroso, S., Fosset, M. and Lazdunski, M. (1990).
$K^{+}$ channel openers activate brain sulphonylureasensitive$K^{+}$ channels and block neurosecretion. Proc. Natl. Acad. Sci. U.S.A. 87, 3489-3492 https://doi.org/10.1073/pnas.87.9.3489 -
Seidler, N. W., Jona, I., Vegh, N. and Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the
$Ca^{2+}$ -ATPase of sarcoplasimc reticulum. J. Biol. Chem. 264, 17816-17823 - Standen, N. B., Quatly, J. M., Davies, N. W., Brayden, J. E., Huang, Y. and Nelson, M. T. (1989). Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245, 177-1780 https://doi.org/10.1126/science.2501869
-
Suzuki, M., Muraki, K., Imaizumi, Y. and Watanabe, M. (1992). Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum
$Ca^{2+}$ -pump, reduces$Ca^{2+}$ -dependent$K^{+}$ currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107, 134-140 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x - Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd Ed. Speringer-Verlag, New York, pp. 132
- Terbush, D. R. and Holz, R. W. (1992). Barium and calcium stimulate secretion from digitonin-permeabilized bovine adrenal chromaffin cells by similar pathways. J. Neurochem. 58, 680-687 https://doi.org/10.1111/j.1471-4159.1992.tb09771.x
-
Uceda, G., Artalejo, A. R., Lopez, M. G., Abad, F., Neher, E. and Garcia, A. G. (1992).
$Ca^{2+}$ -activated$K^{+}$ channels modulate muscarinic secretion in cat chromaffin cells. J. Physiol. 454, 213-230 https://doi.org/10.1113/jphysiol.1992.sp019261 -
Uyama, Y., Imaizumi, Y. and Watanabe, M. (1992). Effects of cyclopiazonic acid, a novel
$Ca^{2+}$ -ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br. J. Pharmacol. 106, 208-214 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x - Wada, A., Kobayashi, H., Arita, M., Yanagihara, N. and Izumi, F. (1987). Potassium channels in cultured bovine adrenal medullary cells: effects of high K, veratridine and carbachol on 86rubidium efflux. Neuroscience 22, 1085-1092 https://doi.org/10.1016/0306-4522(87)92983-6
- Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480 https://doi.org/10.1113/jphysiol.1981.sp013676
- Watson, S. and Abbott, A. (1991). Receptor Nomenclature Supplement. Trends Pharmacol. Sci. (Suppl), 31-33
- Weston, A. H., Longmore, J., Newgreen, D. T., Edwards, G., Bray, K. M. and Duty, S. (1990). The potassium channel openers: a new class of vasorelaxants. Blood Vessels 27, 306-313
- Weston, A. H., Southerton, J. S., Bray, K. M., Newgreen, D. T. and Taylor, S. G. (1988). The mode of action of pinacidil and its analogs P1060 and P1368: Results of studies in rat blood vessels. J. Cardiovasc. Pharmacol. 12 (Suppl), S10-S16
-
Wu, C. W., Leung, C. K. and Yung, W. H. (1996). Sulphonylureas reverse hypoxia induced
$K^{+}$ conductance increase in substantia nigra pars reticulata neurones. Neuroreport 7, 2513-2517 https://doi.org/10.1097/00001756-199611040-00022
Cited by
- Increased Catecholamine Secretion from Single Adrenal Chromaffin Cells in DOCA-Salt Hypertension Is Associated with Potassium Channel Dysfunction vol.4, pp.10, 2013, https://doi.org/10.1021/cn400115v