DOI QR코드

DOI QR Code

N,N-Dimethyl-D-ribo-phytosphingosine Modulates Cellular Functions of 1321N1 Astrocytes

  • Lee, Yun-Kyung (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute of Drug Development, Pusan National University) ;
  • Kim, Hyo-Lim (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute of Drug Development, Pusan National University) ;
  • Kim, Kye-Ok (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute of Drug Development, Pusan National University) ;
  • Sacket, Santosh J. (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute of Drug Development, Pusan National University) ;
  • Han, Mi-Jin (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute of Drug Development, Pusan National University) ;
  • Jo, Ji-Yeong (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute of Drug Development, Pusan National University) ;
  • Lim, Sung-Mee (Department of Food Science & Technology, Tongmyong University) ;
  • Im, Dong-Soon (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute of Drug Development, Pusan National University)
  • Published : 2007.06.30

Abstract

N,N-Dimethyl-D-ribo-phytosphingosine (DMPH) is an N-methyl derivative of sphingosine. In the present paper, we studied effects of DMPH on intracellular Ca$^{2+}$ concentration, pH, glutamate uptake, and cell viability in human 1321N1 astrocytes. DMPH increased intracellular Ca$^{2+}$ concentration and cytosolic pH significantly in a dose-dependent manner. DMPH also inhibited glutamate uptake by 1321N1 astrocytes. Finally, treatment of cells with DMPH for 24 h reduced viability of cells largely and concentration-dependently. In summary, DMPH increased intracellular Ca$^{2+}$ concentration and pH, inhibited glutamate uptake and evoked cytotoxicity in 1321N1 astrocytes. Our observations with DMPH in the 1321N1 astrocytes would enhance understanding of DMPH actions in the brain.

Keywords

References

  1. Abdel-Ghany, M., Osusky, M., Igarashi, Y., Hakomori, S., Shalloway, D. and Racker, R. (1992). Substrate-specific modulation of Src-mediated phosphorylation of Ras and caseins by sphingosines and other substrate modulators. Biochim. Biophys. Acta 1137, 349-355 https://doi.org/10.1016/0167-4889(92)90156-6
  2. Alfonso, A., De la Rosa, L. A., Vieytes, M. R. and Botana, L. M. (2003).Dimethylsphingosine increases cytosolic calcium and intracellular pH in human T lymphocytes. Biochem. Pharmacol. 65, 465-478 https://doi.org/10.1016/S0006-2952(02)01519-8
  3. Benveniste, E. N. (1992). Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am. J. Physiol. 263, C1-16 https://doi.org/10.1152/ajpcell.1992.263.1.C1
  4. Chang, Y. J., Lee, Y. K., Lee, E. H., Park, J. J., Chung, S. K. and Im, D. S. (2006). Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and $Ca^{2+}$ in the U937 monocyte cell line. Arch. Pharm. Res. 29, 657-665 https://doi.org/10.1007/BF02968250
  5. Coroneos, E., Martinez, M., McKenna, S. and Kester, M. (1995). Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J. Biol. Chem. 270, 23305-23309 https://doi.org/10.1074/jbc.270.40.23305
  6. Himmel, H. M., Meyer zu Heringdorf, D., Windorfer, B., van Koppen, C. J., Ravens, U. and Jakobs, K. H. (1998). Guanine nucleotide-sensitive inhibition of L-type $Ca^{2+}$ current by lysosphingolipids in RINm5F insulinoma cells. Mol. Pharmacol. 53, 862-869
  7. Igarashi, Y. and Hakomori, S. (1989). Enzymatic synthesis of N, N-dimethyl-sphingosine: demonstration of the sphingosine: Nmethyltransferase in mouse brain. Biochem. Biophys. Res. Commun. 164, 1411-1416 https://doi.org/10.1016/0006-291X(89)91827-5
  8. Igarashi, Y., Kitamura, K., Toyokuni, T., Dean, B., Fenderson, B., Ogawass, T. and Hakomori, S. (1990). A specific enhancing effect of N,N-dimethylsphingosine on epidermal growth factor receptor autophosphorylation. Demonstration of its endogenous occurrence (and the virtual absence of unsubstituted sphingosine) in human epidermoid carcinoma A431 cells. J. Biol. Chem. 265, 5385-5389
  9. Izumi, H., Torigoe, T., Ishiguchi, H., Uramoto, H., Yoshida, Y., Tanabe, M., Ise, T., Murakami, T., Yoshida, T., Nomoto, M. and Kohno, K. (2003). Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat. Rev. 29, 541-549 https://doi.org/10.1016/S0305-7372(03)00106-3
  10. James-Kracke, M. R. (1992). Quick and accurate method to convert BCECF fluorescence to pHi: calibration in three different types of cell preparations. J. Cell. Physiol. 151, 596-603 https://doi.org/10.1002/jcp.1041510320
  11. Kobayashi, T., Mitsuo, K. and Goto, I. (1988). Free sphingoid bases in normal murine tissues. Eur. J. Biochem. 172, 747-752 https://doi.org/10.1111/j.1432-1033.1988.tb13952.x
  12. Lee, E. H., Lee, Y. K., Im, Y. J., Kim, J. H., Okajima, F. and Im, D. S. (2006a). Dimethylsphingosine regulates intracellular pH and $Ca^{2+}$ in human monocytes. J. Pharmacol. Sci. 100, 289-296 https://doi.org/10.1254/jphs.FPJ05009X
  13. Lee, Y. K., Im, Y. J., Kim, Y. L. and Im, D. S. (2006b). Characterization of $Ca^{2+}$ influx induced by dimethylphytosphingosine and lysophosphatidylcholine in U937 monocytes. Biochem. Biophys. Res. Commun. 348, 1116-1122 https://doi.org/10.1016/j.bbrc.2006.07.164
  14. Lee, Y. K., Kim, H. L., Kim, Y. L. and Im, D. S. (2007). Multiple actions of dimethylsphingosine in 1321N1 astrocytes. Mol. Cells 23, 11-16
  15. Lipskaia, L. and Lompre, A. M. (2004). Alteration in temporal kinetics of $Ca^{2+}$ signaling and control of growth and proliferation. Biol. Cell 96, 55-68 https://doi.org/10.1016/j.biolcel.2003.11.001
  16. Mano, N., Oda, Y., Yamada, K., Asakawa, N. and Katayama, K. (1997). Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal. Biochem. 244, 291-300 https://doi.org/10.1006/abio.1996.9891
  17. Mathes, C., Fleig, A. and Penner, R. (1998). Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J. Biol. Chem. 273, 25020-25030 https://doi.org/10.1074/jbc.273.39.25020
  18. Megidish, T., Cooper, J., Zhang, L., Fu, H. and Hakomori, S. (1998). A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3-3 protein. J. Biol. Chem. 273, 21834-21845
  19. Meyer zu Heringdorf, D., Lass, H., Alemany, R., Laser, K. T., Neumann, E., Zhang, C., Schmidt, M., Rauen, U., Jakobs, K. H. and van Koppen, C. J. (1998). Sphingosine kinase-mediated $Ca^{2+}$ signalling by G-protein-coupled receptors. Embo J. 17, 2830-2837 https://doi.org/10.1093/emboj/17.10.2830
  20. Pellerin, L. and Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91, 10625-10629 https://doi.org/10.1073/pnas.91.22.10625
  21. Piani, D. and Fontana, A. (1994). Involvement of the cystine transport system xc- in the macrophage-induced glutamatedependent cytotoxicity to neurons. J. Immunol. 152, 3578-3585
  22. Pushkareva, M., Khan, W. A., Alessenko, A. V., Sahyoun, N. and Hannun, Y. A. (1992). Sphingosine activation of protein kinases in Jurkat T cells. In vitro phosphorylation of endogenous protein substrates and specificity of action. J. Biol. Chem. 267, 15246-15251
  23. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P. and Welty, D. F. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675-686 https://doi.org/10.1016/S0896-6273(00)80086-0
  24. Sakakura, C., Sweeney, E. A., Shirahama, T., Hagiwara, A., Yamaguchi, T., Takahashi, T., Hakomori, S. and Igarashi, Y. (1998). Selectivity of sphingosine-induced apoptosis. Lack of activity $of_{DL}$-erythyro-dihydrosphingosine. Biochem. Biophys. Res. Commun. 246, 827-830 https://doi.org/10.1006/bbrc.1998.8719
  25. Shin, Y., Daly, J. W. and Choi, O. H. (2000). Diverse effects of sphingosine on calcium mobilization and influx in differentiated HL-60 cells. Cell Calcium 27, 269-280 https://doi.org/10.1054/ceca.2000.0118
  26. Spiegel, S. and Milstien, S. (1995). Sphingolipid metabolites: members of a new class of lipid second messengers. J. Membr. Biol. 146, 225-237
  27. Thomas, J. A., Buchsbaum, R. N., Zimniak, A. and Racker, E. (1979). Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18, 2210-2218 https://doi.org/10.1021/bi00578a012
  28. Yun, M. R., Okajima, F. and Im, D. S. (2004). The action mode of lysophosphatidylcholine in human monocytes. J. Pharmacol. Sci. 94, 45-50 https://doi.org/10.1254/jphs.94.45