Redoxcitrinin, a Biogenetic Precursor of Citrinin from Marine Isolate of Fungus Penicillium sp.

  • Zhang, Dahai (College of Chemistry & Chemical Engineering, Ocean University of China) ;
  • Li, Xianguo (College of Chemistry & Chemical Engineering, Ocean University of China) ;
  • Kang, Jung-Sook (College of Dentistry, Pusan National University) ;
  • Choi, Hong-Dae (Department of Chemistry, Dongeui University) ;
  • Jung, Jee-H. (College of Pharmacy, Pusan National University) ;
  • Son, Byeng-Wha (Department of Chemistry, Pukyong National University)
  • Published : 2007.05.31

Abstract

A chemical analysis of the fermentation of the marine-derived fungus Penicillium sp. led to the isolation of a biogenetic precursor of citrinin, redoxcitrinin(1), together with polyketide mycotoxins, phenol A(2), citrinin H2(3), 4-hydroxymellein(4), citrinin(5), and phenol A acid(6). The structures of compounds 1-6 were determined on the basis of physicochemical data analyses. Among them, compounds 1-3 exhibited a potent radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl(DPPH) with $IC_{50}$ values of 27.7, 23.4, and $27.2{\mu}M$, respectively.

Keywords

References

  1. Barber, J., R. H. Carter, M. J. Garson, and J. Staunton. 1981. The biosynthesis of citrinin by Penicillium citrinum. J. Chem. Soc. Perkin Trans. 1, 2577-2583
  2. Barber, J., A. C. Chapman, and T. D. Howard. 1987. The use of sodium [$2-^2H_3, 1,2-^{13}C_2$]acetate in determining the biosynthetic origins of hydrogen atoms in fungal metabolites: The biosynthesis of citrinin by Penicillium citrinum. J. Antibiot. 40: 245-248 https://doi.org/10.7164/antibiotics.40.245
  3. Barber, J. and J. Staunton. 1981. The total synthesis of some deuterium labeled pentaketide derivatives of orsellinic acid. J. Chem. Soc. Perkin Trans. 1, 1685-1689
  4. Blunt, J. W., B. R. Copp, M. H. G. Munro, P. T. Northcote, and M. R. Prinsep. 2006. Marine natural products. Nat. Prod. Rep. 23: 26-78
  5. Clark, B. R., R. J. Capon, E. Lacey, S. Tennant, and J. H. Gill. 2006. Citrinin revisited: From monomers to dimers and beyond. Org. Biomol. Chem. 4: 1520-1528, and references cited therein https://doi.org/10.1039/b600960c
  6. Cole, R. J., J. H. Moore, N. D. Davis, J. W. Kirksey, and U. L. Diener. 1971. 4-Hydroxymellein: A new metabolite of Aspergillus ochraceus. J. Agr. Food Chem. 19: 909-911 https://doi.org/10.1021/jf60177a003
  7. Colombo, L., C. Gennari, D. Potenza, C. Scolastico, F. Aragozzini, and C. Merendi. 1981. Biosynthesis of citrinin and synthesis of its biogenetic precursors. J. Chem. Soc. Perkin Trans. 1, 2594-2597
  8. Curtis, R. F., C. H. Hassall, and M. Nazar. 1968. The biosynthesis of phenols. Part XV. Some metabolites of Penicillium citrinum related to citrinin. J. Chem. Soc. C 85- 93 https://doi.org/10.1039/j39680000085
  9. Hirota, M., A. B. Menta, K. Yoneyama, and N. Kitabatake. 2002. A major decomposition product, citrinin H2, from citrinin on heating with moisture. Biosci. Biotechnol. Biochem. 66: 206-210 https://doi.org/10.1271/bbb.66.206
  10. Kim, H. J., J. H. Kim, C. H. Lee, and H. J. Kwon. 2006. Gentisyl alcohol, an antioxidant from microbial metabolite, induces angiogenesis in vitro. J. Microbiol. Biotechnol. 16: 475-479
  11. Li, X., S.-K. Kim, J. S. Kang, H. D. Choi, and B. W. Son. 2006. Radical scavenging hydroxyphenyl ethanoic acid derivatives from a marine-derived fungus. J. Microbiol. Biotechnol. 16: 637-638
  12. Yun, B.-S., I.-K. Lee, J.-P. Kim, and I.-D. Yoo. 2000. Two $\{rho}-terphenyls$ from mushroom Paxillus panuoides with free radical scavenging activity. J. Microbiol. Biotechnol. 10: 233-237