Cloning and Characterization of Glycogen-Debranching Enzyme from Hyperthermophilic Archaeon Sulfolobus shibatae

  • Van, Trinh Thi Kim (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University) ;
  • Ryu, Soo-In (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University) ;
  • Lee, Kyung-Ju (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University) ;
  • Kim, Eun-Ju (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University) ;
  • Lee, Soo-Bok (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
  • Published : 2007.05.31

Abstract

A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae(abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at $85^{\circ}C$. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and $\alpha$-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotriose, and $6-O-\alpha-maltosyl-\beta-cyclodextrin(G2-\beta-CD)$ to maltose and $\beta$-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to $G2-\beta-CD$. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Bae, S. S., Y. J. Kim, S. H. Yang, J. K. Lim, J. H. Jeon, H. S. Lee, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16: 1826- 1831
  3. Bates, E. J., G. M. Heaton, C. Taylor, J. C. Kernohan, and P. Cohen. 1975. Debranching enzyme from rabbit skeletal muscle: Evidence for the location of two active centers on a single polypeptide chain. FEBS Lett. 58: 181- 185 https://doi.org/10.1016/0014-5793(75)80254-7
  4. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Braun, C., T. Lindhorst, N. B. Madsen, and S. G. Withers. 1996. Identification of Asp 549 as the catalytic nucleophile of glycogen-debranching enzyme via trapping of the glycosylenzyme intermediate. Biochemistry 35: 5458-5463 https://doi.org/10.1021/bi9526488
  6. Dubnau, D. and R. D. Abenson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis. J. Mol. Biol. 56: 209-221 https://doi.org/10.1016/0022-2836(71)90460-8
  7. Duggleby, R. G. and D. R. Leonard. 1992. DNRPEASY, a data analysis computer program
  8. Fang, T. Y., W.-C. Tseng, C.-J. Yu, and T.-Y. Shih. 2005. Characterization of the thermophilic isoamylase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J. Mol. Catal. B Enzym. 33: 99-107 https://doi.org/10.1016/j.molcatb.2005.04.003
  9. Fang, T. Y., X. G. Hung, T. Y. Shih, and W. C. Tseng. 2004. Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Extremophiles 8: 335-343
  10. Gillard, B. K. and T. E. Nelson. 1977. Amylo-1,6-glucosidase/ $4-{\alpha}-glucanotransferase$: Use of reversible substrate model inhibitors to study the binding and active sites of rabbit muscle debranching enzyme. Biochemistry 16: 3978- 3987 https://doi.org/10.1021/bi00637a007
  11. Kim, I. C., J. H. Cha, J. R. Kim, S. Y. Jang, B. C. Seo, T. K. Cheong, D. S. Lee, Y. D. Choi, and K. H. Park. 1992. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267: 22108-22114
  12. Kim, M.-J., H.-E. Park, H.-K. Sung, T. H. Park, and J. Cha. 2005. Action mechanism of transfructosylation catalyzed by Microbacterium laevaniformans levansucrase. J. Microbiol. Biotechnol. 15: 99-104
  13. Kim, T. J., M. J. Kim, B. C. Kim, J. C. Kim, T. K. Cheong, J. W. Kim, and K. H. Park. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol. 65: 1644-1651
  14. Lee, E. Y. C. and W. J. Whelan. 1971. Glycogen and starch debranching enzyme, pp. 191-234. In P. D. Boyer (ed.), The Enzymes, 3rd Ed. Academic Press, New York, U.S.A
  15. Lee, E. Y. C., J. H. Carter, L. D. Nielsen, and E. H. Fischer. 1970. Purification and properties of yeast amylo-1,6- glucosidase-oligo-1,4-1,4-glucantransferase. Biochemistry 9: 2347-2355
  16. Liu, W., M. L. De Castro, J. Takrama, P. T. Bilous, T. Vinayagamoorthy, N. B. Madsen, and R. C. Bleackley. 1993. Molecular cloning, sequencing, and analysis of the cDNA for rabbit muscle glycogen-debranching enzyme. Arch. Biochem. Biophys. 306: 232-239 https://doi.org/10.1006/abbi.1993.1505
  17. Maruta, K., H. Mitsuzumi, T. Nakada, M. Kubota, H. Chaen, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181 https://doi.org/10.1016/S0304-4165(96)00082-7
  18. Maruta, K., M. Kubota, S. Fukuda, and M. Kurimoto. 2000. Cloning and nucleotide sequence of a gene encoding a glycogen-debranching enzyme in the trehalose operon from Arthrobacter sp. Q36. Biochim. Biophys. Acta 1476: 377- 381 https://doi.org/10.1016/S0167-4838(99)00253-8
  19. Nakayama, A., K. Yamamoto, and S. Tabata. 2000. High expression of glycogen-debranching enzyme in Escherichia coli and its competent purification method. Protein Expr. Purif. 19: 298-303 https://doi.org/10.1006/prep.2000.1252
  20. Nakayama, A., K. Yamamoto, and S. Tabata. 2001. Identification of the catalytic residues of bifunctional glycogen-debranching enzyme. J. Biol. Chem. 276: 28824- 28828 https://doi.org/10.1074/jbc.M102192200
  21. Paik, S.-K., H.-S. Yun, H. Iwahashi, K. Obuchi, and I. Jin. 2005. Effect of trehalose on stabilization of cellular components and critical targets against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965- 970
  22. Ryu, S.-I., C.-S. Park, J. Cha, E.-J. Woo, and S.-B. Lee. 2005. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: Molecular cloning and characterization. Biochem. Biophys. Res. Commun. 329: 429-436 https://doi.org/10.1016/j.bbrc.2005.01.149
  23. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  24. Taylor, C., A. J. Cox, J. C. Kernohan, and P. Cohen. 1975. Debranching enzyme from rabbit skeletal muscle: Purification, properties and physiological role. Eur. J. Biochem. 51: 105- 115 https://doi.org/10.1111/j.1432-1033.1975.tb03911.x
  25. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  26. Urlaub, H. and G. Woeber. 1975. Identification of isoamylase, a glycogen-debranching enzyme, from Bacillus amyloliquefaciens. FEBS Lett. 57: 1-4 https://doi.org/10.1016/0014-5793(75)80138-4
  27. Van der Maarel, M. J., B. Van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the ${\alpha}-amylase$ family. J. Biotechnol. 94: 137-155 https://doi.org/10.1016/S0168-1656(01)00407-2
  28. Watanabe, K., Y. Hata, H. Kizaki, Y. Katsube, and Y. Suzuki. 1997. The refined crystal structure of Bacillus cereus oligo- 1,6-glucosidase at 2.0 ${\AA}$ resolution: Structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. 269: 142-153 https://doi.org/10.1006/jmbi.1997.1018
  29. Yang, B. Z., J. H. Ding, J. J. Enghild, Y. Bao, and Y.-T. Chen. 1992. Molecular cloning human muscle glycogendebranching enzyme. J. Biol. Chem. 267: 9294-9299
  30. Yang, H., M. Y. Liu, and T. Romeo. 1996. Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J. Bacteriol. 178: 1012-1017 https://doi.org/10.1128/jb.178.4.1012-1017.1996