Characterization and Purification of Acidocin 1B, a Bacteriocin Produced by Lactobacillus acidophilus GP1B

  • Han, Kyoung-Sik (Riddet Centre, Massey University) ;
  • Kim, Young-Hoon (Division of Food Science, Korea University) ;
  • Kim, Sae-Hun (Division of Food Science, Korea University) ;
  • Oh, Se-Jong (Institute of Agricultural Science & Technology, Department of Animal Science, Chonnam National University)
  • Published : 2007.05.31

Abstract

In the present study, acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP 1B, exhibited profound inhibitory activity against a variety of LAB and pathogens, including Gram-negative bacteria, and its mode of action was to destabilize the cell wall, thereby resulting in bactericidal lysis. Acidocin 1B was found to be heat stable, because it lost no activity when it was heated up to $95^{\circ}C$ for 60 min. It retained approximately 67% of the initial activity after storage for 30 days at $4^{\circ}C$, and 50% of its initial activity after 30 days at $25^{\circ}C$ and $37^{\circ}C$. The molecular mass of acidocin 1B was estimated to be 4,214.65 Da by mass spectrometry. Plasmid curing results indicated that a plasmid, designated as pLA1B, seemed to be responsible for both acidocin 1B production and host immunity, and that the pLA1B could be transformed into competent cells of L. acidophilus ATCC 43121 by electroporation. Our findings indicate that the acidocin 1B and its producer strain may have potential value as a biopreservative in food systems.

Keywords

References

  1. Abee, T. 1995. Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett. 129: 1-10 https://doi.org/10.1111/j.1574-6968.1995.tb07548.x
  2. Abrionel, H., E. Valdivia, A. Galvez, and M. Maqueda. 2001. Influence of physico-chemical factors on the oligomerization and biological activity of bacteriocin AS-48. Curr. Microbiol. 42: 89-95
  3. Ahn, C. and M. E. Stiles. 1990. Antibacterial activity of lactic acid bacteria isolated from vacuum-packaged meats. J. Appl. Bacteriol. 69: 302-310 https://doi.org/10.1111/j.1365-2672.1990.tb01520.x
  4. Caridi, A. 2002. Selection of Escherichia coli-inhibiting strains of Lactobacillus paracasei subsp. paracasei. J. Ind. Microbiol. Biotechnol. 29: 303-308 https://doi.org/10.1038/sj.jim.7000300
  5. Castellano, P. and G. Vignolo. 2006. Inhibition of Listeria innocua and Brochothrix thermonsphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Lett. Appl. Microbiol. 43: 194-199 https://doi.org/10.1111/j.1472-765X.2006.01933.x
  6. Cheigh, C. I., S. J. Lee, Y. R. Pyun, D. J. Ahn, Y. S. Hwang, Y. Chung, and H. Park. 2005. The effect of carbon sources on Nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164. J. Microbiol. Biotechnol. 15: 1152-1157
  7. Choi, H. J., M. J. Seo, J. C. Lee, C. I. Cheigh, H. Park, C. Ahn, and Y. R. Pyun. 2005. Heterologous expression of human b-defensin-1 in bacteriocin-producing Lactococcus lactis. J. Microbiol. Biotechnol. 15: 330-336
  8. Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20 https://doi.org/10.1016/S0168-1605(01)00560-8
  9. De Vuyst, L. and E. J. Vandamme. 1994. Antimicrobial potential of lactic acid bacteria, pp. 91-142. In L. De Vuyst and E. J. Vandamme (eds.), Bacteriocins of Lactic Acid Bacteria. Blackie Academic & Professional, Glasgow
  10. Drider, D., G. Fimland, Y. Hechard, L. M. McMullen, and H. Prevost. 2006. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70: 564-582 https://doi.org/10.1128/MMBR.00016-05
  11. Ennahar, S., K. Sonomoto, and A. Ishizaki. 1999. Class IIa bacteriocins from lactic acid bacteria: Antibacterial activity and food preservation. J. Biosci. Bioengin. 87: 705-716 https://doi.org/10.1016/S1389-1723(99)80142-X
  12. Gonzalez, C. F. and B. S. Kunka. 1987. Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microbiol. 50: 532-534
  13. Han, K. S., Y. Kim, S. Choi, S. Oh, S. Park, S. H. Kim, and K. Y. Whang. 2005. Rapid identification of Lactobacillus acidophilus by restriction analysis of the 16S-23S rRNA intergenic spacer region and flanking 23S rRNA gene. Biotechnol. Lett. 27: 1183-1188 https://doi.org/10.1007/s10529-005-0014-z
  14. Hansen, J. N., Y. J. Chung, W. Liu, and M. T. Steen. 1991. Biosynthesis and mechanism of action of nisin and subtilin, pp. 287-302. In G. Jung and H.-G. Sahl (eds.), Nisin and Novel Lantibiotics. Escom Publishers, Leiden, The Netherlands
  15. Hoover, D. G., M. Walsh, K. M. Kolaetis, and M. M. Daly. 1988. A bacteriocin produced by Pediococcus spp. associated with a 5.5 MDa plasmid. J. Food Protect. 51: 29-31 https://doi.org/10.4315/0362-028X-51.1.29
  16. Kanatani, K., M. Oshimura, and K. Sano. 1995. Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus. Appl. Environ. Microbiol. 61: 1061-1067
  17. Katikou, P., I. Ambrosiadis, D. Georgantelis, P. Koidis, and S. A. Georgakis. 2005. Effect of Lactobacillus-protective cultures with bacteriocin-like inhibitory substances' producing ability on microbiological chemical and sensory changes during storage of refrigerated vacuum-packaged sliced beef. J. Appl. Microbiol. 99: 1303-1313 https://doi.org/10.1111/j.1365-2672.2005.02739.x
  18. Kawai, Y., T. Saito, M. Suzuki, and T. Itoh. 1998. Sequence analysis by cloning of the structural gene of gassericin A, a hydrophobic bacteriocin produced by Lactobacillus gasseri LA39. Biosci. Biotechnol. Biochem. 62: 887-892 https://doi.org/10.1271/bbb.62.887
  19. Kelly, W. J., R. V. Asmundson, and C. M. Huang. 1996. Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J. Appl. Bacteriol. 81: 657- 662
  20. Kim, J. D. and C. G. Lee. 2006. Influence of extracellular products from Haematococcus pluvialis on growth and bacteriocin production by three species of Lactobacillus. J. Microbiol. Biotechnol. 16: 849-854
  21. Kim, Y. H., K. S. Han, S. Oh, S. You, and S. H. Kim. 2005. Optimization of technical conditions for the transformation of Lactobacillus acidophilus strains by electroporation. J. Appl. Microbiol. 99: 167-174 https://doi.org/10.1111/j.1365-2672.2005.02563.x
  22. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86
  23. Kwon, D. Y., M. Koo, C. R. Ryoo, C. H. Kang, K. H. Min, and W. J. Kim 2002. Bacteriocin produced by Pediococcus sp. in kimchi and its characterisitics. J. Microbiol. Biotechnol. 12: 96-105
  24. Lee, J. H., M. Kim, D. W. Jeong, M. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from kimchi. J. Microbiol. Biotechnol. 15: 428-433
  25. Leer, R. J., J. M. B. M. van der Vossen, M. van Giezen, J. M. van Noort, and P. H. Pouwel. 1995. Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141: 1629-1635 https://doi.org/10.1099/13500872-141-7-1629
  26. Mehta, A. M., K. A. Patel, and P. J. Dave. 1983. Purification and properties of the inhibitory protein isolated from Lactobacillus acidophilus AC1. Microbios 38: 73-81
  27. Messi, P., M. Bondi, C. Sabia, R. Battini, and G. Manicardi. 2001. Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int. J. Food Microbiol. 64: 193-198 https://doi.org/10.1016/S0168-1605(00)00419-0
  28. Muriana, P. M. and T. R. Klaenhammer. 1987. Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Appl. Environ. Microbiol. 53: 553-560
  29. Naidu, A. S., W. R. Bidlack, and R. A. Clemens. 1999. Probiotic spectra of lactic acid bacteria. Crit. Rev. Food Sci. Technol. 38: 13-126
  30. Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128 https://doi.org/10.1007/BF00395929
  31. Nes, I. and H. Holo. 2000. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55: 50-61 https://doi.org/10.1002/1097-0282(2000)55:1<50::AID-BIP50>3.0.CO;2-3
  32. Ojcius, E. and J. D. E. Young. 1991. Cytolytic pore-forming proteins an peptides: Is there a common structural motif. Trends Biochem. Sci. 16: 225-229 https://doi.org/10.1016/0968-0004(91)90090-I
  33. O'Sullivan, D. J. and T. R. Klaenhammer. 1993. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 13: 227-231 https://doi.org/10.1016/0378-1119(81)90028-7
  34. Piard, J. C. and M. Desmazeaud. 1992. Inhibiting factors produced by lactic acid bacetria. 2. Bacteriocin and other antibacterial substances. Lait 72: 113-142 https://doi.org/10.1051/lait:199229
  35. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  36. Tahara, T. and K. Kanatani. 1996. Isolation, partial characterization and mode of action of acidocin J1229, a bacteriocin produced by Lactobacillus acidophilus JCM 1229. J. Appl. Bacteriol. 81: 669-677
  37. ten Brink, B., M. Minekus, J. M. van der Vossen, R. J. Leer, and J. H. Huis in't Veld. 1994. Antimicrobial activity of lactobacilli: Preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J. Appl. Bacteriol. 77: 140- 148 https://doi.org/10.1111/j.1365-2672.1994.tb03057.x
  38. Toba, T., E. Yoshioka, and T. Itoh. 1991. Acidophilucin A, a new heat-lable bacteriocin produced by Lactobacillus acidophilus LAPT 1060. Lett. Appl. Microbiol. 12: 106- 108 https://doi.org/10.1111/j.1472-765X.1991.tb00516.x
  39. Todorov, S. D. and L. M. T. Dicks. 2004. Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soya flour. World J. Microbiol. Biotechnol. 20: 643-650 https://doi.org/10.1023/B:WIBI.0000043196.09610.de
  40. Vignolo, G., J. Palacios, M. E. Farias, F. Sesma, U. Schillinger, W. Holzapfell, and G. Oliver. 2000. Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Curr. Microbiol. 41: 410- 416 https://doi.org/10.1007/s002840010159
  41. Vizan, J. L., C. Hernandez-Chico, I. del Castillo, and F. Moreno. 1991. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J. 10: 467-476
  42. Wei, M. Q., C. M. Rush, H. M. Norman, L. M. Hafner, R. J. Epping, and P. Timms. 1995. An improved method for the transformation of Lactobacillus strains using electroporation. J. Microbiol. Methods 21: 97-109 https://doi.org/10.1016/0167-7012(94)00038-9
  43. Yang, C. C. and J. Konisky. 1984. Colicin V-treated Escherichia coli does not generate membrane potential. J. Bacteriol. 158: 757-759
  44. Yildirim, Z., D. K. Winters, and M. G. Johnson. 1999. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J. Appl. Microbiol. 86: 45-54 https://doi.org/10.1046/j.1365-2672.1999.00629.x