DOI QR코드

DOI QR Code

Progress in the Direct Application of Pharmacogenomics to Patient Care: Sustaining innovation

  • Frueh, Felix W. (Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration) ;
  • Lesko, Lawrence J. (Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration) ;
  • Burckart, Gilbert J. (Department of Pharmacy, University of Southern California)
  • Published : 2007.03.30

Abstract

The application of the knowledge from the Human Genome Project to clinical medicine will be through both industrial drug development and the application of pharmacogenomics (PG) to patient care. The slow uptake of clinical innovations into clinical practice can be frustrating, but understanding the history of acceptance and sustaining medical innovation is critically important to position PG to succeed. This primarily means that PG tests must have legitimacy; they must be thoroughly validated, must be cost-effective, must be widely accepted by medical practitioners, must be supported by public policy, and must have a way of being easily incorporated into current medical practice. They must also lead to actionalble decisions by health care providers for their patients. Innovative PG assays should be tested in the best US laboratories, and reimbursement for testing must be accepted at the federal and state level. The companies providing these PG tests should be capable of sup-porting the interpretation and use of the test throughout medical practice. Advances such as the addition of PG information to drug labeling and the routine use of validated biomarkers to determine choice of cancer chemotherapy have been made. The PG research community must pay attention to the principles that have been previously described for acceptance and sustaining medical innovations in order for PG to be widely accepted in clinical medical practice.

Keywords

References

  1. Burckart, G. J. and Liu, X. I. (2006). Pharmacogenetics in transplant patients: can it predict pharmacokinetics and pharmacodynamics? Therapeutic Drug Monitoring 28(1), 23-30 https://doi.org/10.1097/01.ftd.0000194502.85763.bc
  2. Evans, B. J., Flockhart, D. A. and Meslin, E. M. (2004). Creating incentives for genomic research to improve targeting of therapies. Nature Medicine 10(12), 1289-91 https://doi.org/10.1038/nm1204-1289
  3. Evans, W. E. (2004). Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Therapeutic Drug Monitoring 26(2), 186-91 https://doi.org/10.1097/00007691-200404000-00018
  4. Frueh, F. W., Goodsaid, F., Rudman, A., Huang, S. M. and Lesko, L. J. (2005). The need for education in pharmacogenomics: a regulatory perspective. Pharmacogenomics Journal 5(4), 218-20 https://doi.org/10.1038/sj.tpj.6500316
  5. Herman, D., Locatelli, I., Grabnar, I., Peternel, P., Stegnar, M., Mrhar, A., Breskvar, K. and Dolzan, V. (2005). Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics Journal 5(3), 193-202 https://doi.org/10.1038/sj.tpj.6500308
  6. Kurzawski, M., Dziewanowski, K., Gawronska-Szklarz, B., Domanski, L. and Drozdzik, M. (2005). The impact of thiopurine s-methyltransferase polymorphism on azathioprineinduced myelotoxicity in renal transplant recipients. Therapeutic Drug Monitoring 27(4), 435-41 https://doi.org/10.1097/01.ftd.0000164393.09402.c9
  7. Lehmann, D. F., Medicis, J. J. and Franklin, P. D. (2003). Polymorphisms and the pocketbook: the cost-effectiveness of cytochrome P450 2C19 genotyping in the eradication of Helicobacter pylori infection associated with duodenal ulcer. Journal of Clinical Pharmacology 43(12), 1316-23 https://doi.org/10.1177/0091270003259389
  8. MacPhee, I. A. M., Fredericks, S., Tai, T., Syrris, P., Carter, N. D., Johnston, A., Goldberg, L. and Holt, D. W. (2004). The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation.[see comment]. American Journal of Transplantation 4(6), 914-9 https://doi.org/10.1111/j.1600-6143.2004.00435.x
  9. Marra, C. A., Esdaile, J. M. and Anis, A. H. (2002). Practical pharmacogenetics: the cost effectiveness of screening for thiopurine s-methyltransferase polymorphisms in patients with rheumatological conditions treated with azathioprine. Journal of Rheumatology 29(12), 2507-12
  10. Mummaneni, P., Amur, S. G., Goodsaid, F., Rudman, A. and Frueh, F. W. (2006). Genomic biomarkers in FDA-approved drug labels (abst). Journal of Clinical Pharmacology 46, 1088
  11. Mushiroda, T., Ohnishi, Y., Saito, S., Takahashi, A., Kikuchi, Y., Saito, S., Shimomura, H., Wanibuchi, Y., Suzuki, T., Kamatani, N. and Nakamura, Y. (2006). Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients. Journal of Human Genetics 51(3), 249-53 https://doi.org/10.1007/s10038-005-0354-5
  12. Racine, D. P. (2006). Reliable effectiveness: a theory on sustaining and replicating worthwhile innovations. Administration & Policy in Mental Health 33(3), 356-87 https://doi.org/10.1007/s10488-006-0047-1
  13. Rieder, M. J., Reiner, A. P., Gage, B. F., Nickerson, D. A., Eby, C. S., McLeod, H. L., Blough, D. K., Thummel, K. E., Veenstra, D. L. and Rettie, A. E. (2005). Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. New England Journal of Medicine 352(22), 2285-93 https://doi.org/10.1056/NEJMoa044503
  14. Rolan, P., Atkinson, A. J., Jr., Lesko, L. J., Scientific Organizing, C. and Conference Report, C. (2003). Use of biomarkers from drug discovery through clinical practice: report of the Ninth European Federation of Pharmaceutical Sciences Conference on Optimizing Drug Development. Clinical Pharmacology & Therapeutics 73(4), 284-91 https://doi.org/10.1016/S0009-9236(02)17625-9
  15. Sconce, E. A., Khan, T. I., Wynne, H. A., Avery, P., Monkhouse, L., King, B. P., Wood, P., Kesteven, P., Daly, A. K. and Kamali, F. (2005). The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7), 2329-33 https://doi.org/10.1182/blood-2005-03-1108
  16. Veenstra, D. L., You, J. H. S., Rieder, M. J., Farin, F. M., Wilkerson, H.-W., Blough, D. K., Cheng, G. and Rettie, A. E. (2005). Association of Vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenetics & Genomics 15(10), 687-91 https://doi.org/10.1097/01.fpc.0000174789.77614.68
  17. Woelderink, A., Ibarreta, D., Hopkins, M. M. and Rodriguez-Cerezo, E. (2006). The current clinical practice of pharmacogenetic testing in Europe: TPMT and HER2 as case studies. Pharmacogenomics Journal 6(1), 3-7 https://doi.org/10.1038/sj.tpj.6500341
  18. Wolfberg, A. J. (2006). Genes on the Web--direct-to-consumer marketing of genetic testing. New England Journal of Medicine 355(6), 543-5 https://doi.org/10.1056/NEJMp068079
  19. You, J. H. S., Chan, F. W. H., Wong, R. S. M. and Cheng, G. (2004). The potential clinical and economic outcomes of pharmacogenetics-oriented management of warfarin therapy - a decision analysis. Thrombosis & Haemostasis 92(3), 590-7
  20. Zheng, H., Webber, S., Zeevi, A., Schuetz, E., Zhang, J., Bowman, P., Boyle, G., Law, Y., Miller, S., Lamba, J. and Burckart, G. J. (2003). Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. American Journal of Transplantation 3(4), 477-83 https://doi.org/10.1034/j.1600-6143.2003.00077.x
  21. Zheng, H., Zeevi, A., Schuetz, E., Lamba, J., McCurry, K., Griffith, B. P., Webber, S., Ristich, J., Dauber, J., Iacono, A., Grgurich, W., Zaldonis, D., McDade, K., Zhang, J. and Burckart, G. J. (2004). Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. Journal of Clinical Pharmacology 44(2), 135-40 https://doi.org/10.1177/0091270003262108

Cited by

  1. The Critical Path of Warfarin Dosing: Finding an Optimal Dosing Strategy Using Pharmacogenetics vol.84, pp.3, 2008, https://doi.org/10.1038/clpt.2008.133
  2. The personalized medicine revolution: Getting it right for children vol.16, pp.6, 2012, https://doi.org/10.1111/j.1399-3046.2011.01638.x
  3. Pharmacogenomics: The Key to Improved Drug Therapy in Transplant Patients vol.28, pp.3, 2008, https://doi.org/10.1016/j.cll.2008.09.004