제주도 자생식물 메탄올 추출액의 항산화 및 항균효능 검색

Screening of Antioxidative and Antibacterial Activity from Methanol Extracts of Indigenous Plants, Jeju-Island

  • 문영건 (제주대학교 해양과학대학 해양과학부) ;
  • 허문수 (제주대학교 해양과학대학 해양과학부)
  • 발행 : 2007.04.30

초록

제주도 자생식물의 80% 메탄올 추출물 10종의 항균 효과 및 항산화 효과를 검색하였다. 실험 대상 식물은 생체 채집하여 음건한 후 세절하여 80% 메탄올로 추출하여 추출된 시료를 10% 농도로 희석한 후 어류 질병미생물에 대한 항균실험을 하였고 80% 메탄올 추출물에 대한 항산화 실험은 각각의 시료를 0.1%, 0.5%, 0.8%, 1.0%, 2.0%로 희석하여 각 식물의 항산화 효과를 측정하였다. 항균 실험은 어류 질병미생물로 분류된 그람 음성균 12종과 그람 양성균 1종에 대하여 디스크 확산법으로 측정하였는데 그 결과 두메꿀풀 꽃과 잎 추출물에서 가장 강한 항균 효과를 나타내었고 다음으로 풀고사리 잎과 돌잔고사리 잎, 들깨 잎, 들깨 열매 순으로 나타났으며 큰천남성 뿌리나 왕모시풀 잎, 열매에서는 눈에 띄는 항균 효과를 나타내지는 않았다. 그리고 항산화 효과를 측정하기 위해 DPPH radical 소거능과 SOD 유사활성, Hyoxyl radical 소거 활성을 실험하였다. 각 식물의 80% 메탄올 추출물을 농도별로 희석하여 측정 한 결과 농도가 높아질수록 항산화 효과가 증가하는 것을 확인 할 수가 있었으며 2.0% 농도에서 두메꿀풀 잎과 열매 그리고 들깨 잎과 열매, 돌잔고사리 잎은 합성 항산화제인 BHT, BHA와 활성을 비교하여 보았을 때 BHT, BHA보다 높거나 유사한 항산화 효과를 나타내었다.

In this study, we investigated the biological activity of antioxidant and antibacterial activity of Indigenous Plants, Jeju-Island., which, using methanol were extracted. The reducing activity on the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical and $O^{2-}$ and OH radical scavenging potential, in search for antioxidation activities of Indigenous Plants, were sequentially screened. Among the ten plant parts, Prunella vulgaris var. aleutica Fernald. flower had the highest antioxidative activity. 80% Methanol extracts of ten indigenous plants were screened for antibacterial activity 13 fish pathogenic bacteria by agar diffusion method. Among the various 80% Methanol extracts, the Prunella vulgaris var. aleutica Fernald, Gleichenia japonica Spreng, Microlepia marginata (panzer) Christ., Perilla frutescens var. japonica Hara. showed relatively strong antibacterial activities in the order.

키워드

참고문헌

  1. Lee, B. H., B. W. Choi, J. H. Chun, and B. S. Yu (1996), Extraction of water soluble antioxidants from seaweeds, J. Korean Ind. & Eng. Chemistry 7(6), 1066-1077
  2. Talalay, P. and A. M. Bensen (1982), Elvation of quinone reductase activity by anticarcinogenic antioxidants, Advances in Enzyme Regulation 20, 287-300 https://doi.org/10.1016/0065-2571(82)90021-8
  3. Fridovich, I. (1983), Superoxide radical: An endogenous toxicant, Ann. Rev. Pharmacal. Toxicol. 23, 239-257 https://doi.org/10.1146/annurev.pa.23.040183.001323
  4. Dalton, D. A., L. Langeberg, and N. C. Treneman (1993), Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules, Physiol. Plants 87, 365-370 https://doi.org/10.1111/j.1399-3054.1993.tb01743.x
  5. Brannen, A. L (1975), Toxicology and biochemistry of butylated hydroxy toluene and butylated hydroxy anisole, J. Am. Oil Chem. Soc.52, 59-63 https://doi.org/10.1007/BF02901825
  6. Ito, N., S. Fukushima, and A. Hasebawa (1983), Cacrinogenicity of BHA in F344 rats, J. Natl. Cancer Inst. 70, 343
  7. Chan, K. M., E. A. Decker, and W. J. Means (1993), Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle, J. Food. Sci. 58, 1-4 https://doi.org/10.1111/j.1365-2621.1993.tb03199.x
  8. Choe, S. Y. and K. H. Yang (1982), Toxicological studies of antioxidants butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) (in Korean), Korean J. Food Sci, Technol. 14, 283-288
  9. Yashodhararan Kumurasamy, Philip John Cox, Marcel Jaspars, Lutfun Nahar and SatyajitDey Sarker (2002), Screening seeds of Scottish plants for antibacterial activity, J. Ethnopharmacology 83, 73-77 https://doi.org/10.1016/S0378-8741(02)00214-3
  10. Lee, Y. C. Oh, S. W., and H. D. Hong (2002), Antimicroblal characteristics of edible medicinal herbs extracts, Korean J. Food Sci. Technol. 34, 700-709
  11. Young-No Lee (2002), Flora of Korea, 4th ed. Kyo-Hak Publishing Co. Ltd., Seoul, Korea
  12. Kim, T. J. (1996), Korean Resources Plants I, 11-21, Seoul National University Press, Korea
  13. Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., and Yolke R. H. (1999), Manual of Clinical Microbiology, 7th. ed. ASM, Washington, DC
  14. Blois, M. S. (1958), Antioxidant determination by the use of a stable free radical, Nature 26, 1199-1200
  15. Eugene E., Roth. Jr., and Harriet S. Gilbert (1983), The pyrogallol assay for superoxide dismutase: absence in glutathione artifact, Anal. Biochem. 137, 50-51 https://doi.org/10.1016/0003-2697(84)90344-0
  16. Murklud, S. and G. Marklud (1974), Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem. 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  17. Kawagan, S. (1996), Protocol for control of body functional material in food, 8-15, Kakuen. press center, Japan
  18. Trush, M. A., Mimnaugh, E. G., and T. E. Gram (1982), Activation of pharmacologic agents to radical intermediates. Implications for the role of free radicals in drug action and toxicity, Biochem. Pharmacol. 31, 3335-3346 https://doi.org/10.1016/0006-2952(82)90609-8
  19. Aruoma, O. I. (1994), Nutrition and health aspects of free radicals and ntioxidants, Food Chem. Toxicol. 32, 671-683 https://doi.org/10.1016/0278-6915(94)90011-6
  20. Miquel, J., Quintanilha, A. T., and H. Weber (1989), In Handbook of free radicals and antioxidants in biomedicine, CRC press, I p223
  21. KoguKuchi, N. (1999), Protocol for free radical experimant, pp40-45, suiyoonsa, Japan