Production of Fructose 6-Phoschate from Starch Using Thermostable Enzymes

내열성 효소를 이용한 전분으로부터 6-인산과당의 제조

  • Kwun, Kyu-Hyuk (Department of Chemical & Biochemical Engineering, Chosun University) ;
  • Cha, Wol-Suk (Department of Chemical & Biochemical Engineering, Chosun University) ;
  • Kim, Bok-Hee (Regional Innovation Center, Seowon University) ;
  • Shin, Hyun-Jae (Department of Chemical & Biochemical Engineering, Chosun University)
  • 권규혁 (조선대학교 공과대학 생명화학공학과) ;
  • 차월석 (조선대학교 공과대학 생명화학공학과) ;
  • 김복희 (서원대학교 RIC) ;
  • 신현재 (조선대학교 공과대학 생명화학공학과)
  • Published : 2007.10.30

Abstract

Phosphosugars are found in all living organisms and are commercially valuable compounds with possible applications in the development of a wide range of specialty chemicals and medicines. In carbohydrate metabolism, fructose 6-phosphate (F6P) is an essential intermediate formed by phosphorylation of 6' position of fructose in glycolysis, gluconeogenesis, pentose phosphate pathway and Calvin cycle. In glycolysis, F6P lies within the glycolysis metabolic pathway and is produced by isomerisation of glucose 6-phosphate. For large-scale production, F6P could be produced from starch using many enzymes such as pullulanase, starch phosphorylase, isomerase and mutase. In enzymatic reactions carried out at high temperatures, the solubility of starch is increased and microbial contamination is minimized. Thus, thermophile-derived enzymes are preferred over mesophile-derived enzymes for industrial applications using starch. Recently, we reported the production of glucose 1-phosphate (G1P) from starch by Thermus caldophilus GK24 enzymes. Here we report the production of F6P from starch through three steps; from starch to glucose 1-phosphate (glucan phosphorylase, GP), then glucose 6-phosphate (phosphoglucomutase, GM) and then F6P (phosphoglucoisomerase, GI). Using 200 L of 1.2% soluble starch solution in potassium phosphate buffer, 1,253 g of G1P were produced. Then, 30% yields of F6P were attained at the optimum reaction conditions of GM : G1 (1 : 2.3), 63.5$^{\circ}C$, and pH 6.85. The optimum conditions were found by response surface methodology and the theoretical values were confirmed by the experiments. The optimum starch concentrations were 20 g/L under the given conditions.

인산당은 모든 유기체에서 발견되며 무척 다양한 유용성을 지니고 있다. 특히 glucose 1-phosphate (G1P), glucose 6-phosphate (G6P), fructose 6-phosphate (F6P) 등은 해당과 정, 당합성과정, 5탄당 인산화과정 및 캘빈회로와 같은 탄수화물 대사와 에너지 생산 대사의 주요한 핵심 중간물질이다. 특히 해당과정에서 F6P는 G6P의 이성질화반응에 의하여 생성된다. F6P의 대량생산은 전분을 이용하는 것이 가능한데, 우선 전분에 인산화효소를 가하여 G1P를 얻고, 이 G1P를 자리옮김효소 (phosphoglucomutase, GM)와 이성질화효소 (phosphoglucoisomerase, GI)를 순차적으로 적용하여 G6P와 F6P를 생산하게 된다. 효소반응의 경우 전분의 용해도 증가, 반응속도의 향상 및 미생물의 오염방지 등을 위하여 중온성 효소보다는 고온성 효소 혹은 내열성 효소가 선호된다. 본 연구는 세 가지 내열성 효소를 이용하여 전분으로부터 두 단계반응으로 F6P를 생산하는 것에 관한 것이다. 실험에 사용된 효소는 대장균에서 발현된 재조합 효소로서, 효소의 생산은 유가식 배양을 이용하였다. 1.2% 가용성 전분 200 L를 이용하여 1,253 g의 순수한 G1P를 생산하였으며 이를 이용하여 최종적으로 30% 수율로 F6P를 생산할 수 있었다. 최대수율을 얻기 위하여 반응표면분석법을 이용하여 GM : GI = 1 : 1.23, 63.5$^{\circ}C$, pH 6.85의 조건이 도출되었으며, 이 조건하에서 실험을 통하여 20 g/L의 전분을 이용하여 30% 수율로 F6P가 생성됨을 확인할 수 있었다.

Keywords

References

  1. Berg, J., J. Tymoczko, and L. Stryer (2002), Biochemistry, 5th ed., W.H. Freeman and Company, New York
  2. Matti, S., European Patent 0506772 (WO 9109604) (1991), A pharmaceutical composition comprising a phosphosugar
  3. GenBank AE 017221 (Thermus thermophilus HB27)
  4. GenBank AP 008226 (Thermus thermophilus HB8)
  5. Koga, T., K. Nakamura, Y. Shirokane, K. Mizusawa, S. Kitao, and M. Kikuchi (1991), Purification and some propoerties of sucrose phosphorylase from Leuconostoc mesenteroides, Agric. Biol. Chem. 557, 1805-1810
  6. Shin, H. J., Y. Shin, and D. S. Lee (2000), Formation of $\alpha$-D-glucose-l-phosphate by thermophilic $\alpha$-1,4-D-glucan phosphorylase, J. Ind. Microbiol. Biotechnol. 24, 89-93 https://doi.org/10.1038/sj.jim.2900757
  7. Shigeto, K., K. Takashi, S. Masaru, I. Takashi, T. Masanobu, K. Tomihiro, European Patent 0305981A2 (JP1063589) (1989), Process for preparing glucose-1-phosphate
  8. Akademia, M. T. and K. T. Osztalya (1971), Recent developments in the chemistry of natural carbon compounds, Springer, Berlin
  9. Venkaiah B. and A. Kumar (1994), Egg shell bound starch phosphorylase packed bed reactor for the continuous production of glucose l-phosphate, J. Biotechnol. 36, 11-17 https://doi.org/10.1016/0168-1656(94)90017-5
  10. Manjunath, S., C. H. K. Lee, P. V. Winkle, and 1 Bailey-Serres (1998), Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize: expression during development and in response to oxygen deprivation, Plant Physiol, 117, 997-1006 https://doi.org/10.1104/pp.117.3.997
  11. Cordenunsi, B. R, J. R O. do Nascimento, R V. da Mota, and F. M. Lajolo (2001), Phosphoglucose isomerase from banana: partial characterization and relation to main changes in carbohydrate composition during ripening, Biosci. Biotechnol. Biochem. 65, 2174-2180 https://doi.org/10.1271/bbb.65.2174
  12. Hansen, T., D. Wendorff, and P. Schonheit (2004), Bifunctional phosphoglucose/phosphomannose isomerase from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily, J. Biologic. Chem. 279, 2262-2272 https://doi.org/10.1074/jbc.M309849200
  13. Choi, J. Y., W. S. Cha, and H. J. Shin (2006), Production of recombinant trehalose synthase from Thermus caldophilus GK24, Korean J. Biotechnol. Bioeng. 21, 298-30
  14. Bae, J, D. H. Lee, D. Kim, S. J. Cho, J. E. Park, S. Koh, J. Kim, B. H. Park, Y. Choi, H. J. Shin, S. I. Hong, and D. S. Lee (2005), Facile synthesis of glucose-1-phosphate from starch by Thermus caldophilus GK24 $\alpha$-glucan phosphorylase, Process Biochem. 40, 3707-3713 https://doi.org/10.1016/j.procbio.2005.05.007
  15. Shin, H. J, Y. Shin, and D. S. Lee (1999), Analysis of low-level $\alpha$-D-glucose-l-phosphate in thermophilic enzyme reaction mixture using high pH anion-exchange chromatography, Korean J. Biotechnol. Bioeng. 14, 384-388