생분해성 고분자, 폴리하이드록시알카노에이트를 이용한 바이오센서 칩 연구와 그 응용

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip

  • 박태정 (한국과학기술원 생명화학공학과 (BK21 프로그램), 생물공정연구센터, 시스템 및 합성생명공학연구센터, 초미세화학공정연구센터) ;
  • 이상엽
  • Park, T.J. (Department of Chemical & Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute ofr the BioCentury, and Center for Ultramicrochemical Process Systems) ;
  • Lee, S.Y. (Department of Bio & Brain Engineering and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
  • 발행 : 2007.12.31

초록

나노기술과 바이오기술의 융합연구에 의해 나노바이오기술이 발전되고 있다. 나노바이오기술의 중요한 응용연구 중의 하나로서, 진단이나 바이오센서 분야에서 단백질-단백질 및 단백질-바이오물질간의 상호작용을 연구하기 위한 단백질 센서 칩이 개발되어 왔다. 본 논문에서는 단백질의 선택적 고정화를 위한 새로운 생체고분자 기질로 PHA를 이용하는 첫 번째 예로서, 단백질-단백질 및 항원-항체 반응의 구현을 나타내고자 하였다. 본 시스템은 PHA 표면 위에서 PHA depolymerase의 SBD와의 선택적 결합에 기반한 것으로, PHA depolymerase의 SBD와 융합된 단백질이 PHA가 코팅된 표면 위에 spotting 될 수 있고 미세접촉인쇄방법에 의해 PHA 위에 미세패턴이 제조되어지는 것을 알 수 있었다(52, 53). 이러한 새로운 전략이 PHA depolymerase의 SBD와 다른 단백질을 융합함으로서 미세 spotting과 미세패터닝이 가능하게 되었고 항원-항체의 생물학적 반응을 통해 많은 바이오센서 칩 연구에 응용될 수 있음을 확인하였다. 또한, PHA 마이크로 비드에도 PHA depolymerase의 SBD와 융합된 단백질을 고정시킴으로서 항원-항체 반응을 유도할 수 있음을 확인하였다(54). PHA의 구조를 변경하여 PHA 기판, PHA 필름, PHA 미세패턴, PHA 마이크로 비드 등을 이용할 수 있으며 multiplex assay를 동시에 진행할 수 있는 다양한 융합 단백질을 사용할 수 있을 것이다. 생분해성 플라스틱으로서 성공적으로 개발된 PHA를 이용한 새로운 플랫폼 기술이 PHA depolymerase의 SBD를 이용함으로서 특이적이고 선택적인 단백질의 고정화에 이용될 수 있음을 확인하였다. 본 전략이 다양한 단백질-단백질 및 단백질-바이오물질 반응을 이용한 바이오칩 및 바이오센서의 응용연구에 유용하게 사용될 것이다.

Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.

키워드

참고문헌

  1. Niemeyer, C. M. and C. A. Mirkin (2004), Nanobiotechnology: Concepts, Applications and Perspectives, John Wiley & Sons, Inc., New Jersey
  2. Fortina, P., L. J. Kricka, S. Surrey, and P. Grodzinski (2005), Nanobiotechnology: the promise and reality of new approaches to molecular recognition, Trends Biotechnol. 23, 168-173 https://doi.org/10.1016/j.tibtech.2005.02.007
  3. Whitesides, G. M. (2003), The 'right' size in nanobiotechnology, Nat. Biotechnol. 18, 760-763
  4. Gourley, P. L. (2005), Brief overview of biomicronano technologies, Biotechnol. Prog. 21, 2-10 https://doi.org/10.1021/bp0498239
  5. Laval, J. M, P. E. Mazeran, and D. Thomas (2000), Nanobiotechnology and its role in the development of new analytical devices, Analyst 125, 29-33 https://doi.org/10.1039/a907827d
  6. Lee, S. J. and S. Y. Lee (2004), Micro total analysis system ($\mu$-TAS) in biotechnology, Appl. Microbiol. Biotechnol. 64, 289-299 https://doi.org/10.1007/s00253-003-1515-0
  7. Lowe, C. R. (2000), Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures, Curr. Opin. Struct. Biol. 10, 428-434 https://doi.org/10.1016/S0959-440X(00)00110-X
  8. Hodneland, C. D., Y.-S. Lee, D.-H. Min, and M. Mrksich (2002), Selective immobilization of protein to self-assembled monolayers presenting active site directed capture ligands, Proc. Natl. Acad. Sci. 99, 5048-5052
  9. Niemeyer, C. M. (2000), Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology, Curr. Opin. Chem. Biol. 4, 609-618 https://doi.org/10.1016/S1367-5931(00)00140-X
  10. Wilson, D. S. and S. Nock (2003), Recent developments in protein microarray technology, Angew. Chem. Int. Ed. 42, 494-500 https://doi.org/10.1002/anie.200390150
  11. Cha, T.-W., A. Guo, Y. Jun, D. Pei, and X.-Y. Zhu (2004), Immobilization of oriented protein molecules on poly(ethylene glycol)-coated Si(111), Proteomics 4, 1965-1976 https://doi.org/10.1002/pmic.200300747
  12. Shirahata, N., T. Yonezawa, Y. Miura, K. Kobayashi, and K. Koumoto (2003), Patterned adsorption of protein onto a carbohydrate monolayer immobilized on Si, Langmuir 19, 9107-9109 https://doi.org/10.1021/la0349020
  13. Shadnam, M. R., S. E. Kirkwood, R. Fedosejevs, and A. Amirfazli (2004), Direct patterning of self-assembled monolayers on gold using a laser beam, Langmuir 30, 2667-2676
  14. Frey, W., D. E. Meyer, and A. Chilkoti (2003), Dynamic addressing of a surface pattern by a stimuli-responsive fusion protein, Adv. Mater. 15, 248-251 https://doi.org/10.1002/adma.200390058
  15. Zhu, H. and M. Snyder (2003), Protein chip technology, Curr. Opin. Chem. Biol. 7, 55-63 https://doi.org/10.1016/S1367-5931(02)00005-4
  16. Kobayashi, G., T. Shiotani, Y. Shima, and Y. Doi (1994), Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from oils and fats by Aeromonas sp. OL-338 and Aeromonas sp. FA440, in: Biodegradable Plastics and Polymers, Doi and Fukuda, Eds., p410, Elsevier, Amsterdam
  17. Lee, S. Y. (1996), Bacterial polyhydroxyalkanoates, Biotechnol. Bioeng. 49, 1-14 https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  18. Lee, S. Y. (1996), Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria, Trends Biotechnol. 14, 431-438 https://doi.org/10.1016/0167-7799(96)10061-5
  19. Lee, S. Y. and E. T. Papoutsakis (1999), Metabolic engineering, Marcel Dekker, Inc., New York
  20. Steinbuchel, A. (1991), Polyhydroxyalkanoic acids, in: Biomaterials: novel materials from biological sources, D. Byrom, Eds., p124, Stockton, New York
  21. Madison, L. L. and G. W. Huisman (1999), Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic, Microbiol. Mol. Biol. Rev. 63, 21-53
  22. Jendrossek, D. and R. Handrick (2002), Microbial degradation of polyhydroxyalkanoates, Ann. Rev. Microbiol. 56, 403-432 https://doi.org/10.1146/annurev.micro.56.012302.160838
  23. Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller (1990), Plastics from bacteria and for bacteria: polyhydroxyalkanoates as natural, biocompatible, and biodegradable polyesters, Adv. Biochem. Eng. Biotechnol. 41, 77-93
  24. Lenz, R. W. and R. H. Marchessault (2005), Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules 6, 1-8 https://doi.org/10.1021/bm049700c
  25. Choi, J., S. Y. Lee, and K. Han (1998), Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli, Appl. Environ. Microbiol. 64, 4897-4903
  26. Wang, F. and S. Y. Lee (1997), Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation, Appl. Environ. Microbiol. 63, 3703-3706
  27. Dennis, D., M. McCoy, A. Stangl, H. E. Valentin, and Z. Wu (1998), Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha, J. Biotechnol. 64, 177-186 https://doi.org/10.1016/S0168-1656(98)00110-2
  28. Wang, J. and J. Yu (2001), Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions, J. Ind. Microbiol. Biotechnol. 26, 121-126 https://doi.org/10.1038/sj.jim.7000097
  29. Cho, K.-S., H. W. Ryu, C.-H. Park, and P. R. Goodrich (1997), Poly(hydroxybutyrate-co-hydroxyvalerate) from swine waste liquor by Azotobacter vinelandii UWD, Biotechnol. Lett. 19, 7-10 https://doi.org/10.1023/A:1018342332141
  30. Bourque, D., B. Ouellette, G. Andre, and D. Groleau (1992), Production of polybeta-hydroxybutyrate from methanol: characterization of a new isolate of Methylobacterium extorquens, Appl. Microbiol. Biotechnol. 37, 7-12
  31. Kang, C. K., H. S. Lee, and J. H. Kim (1993), Accumulation of PHA and its copolyester by Methylobaterium sp. KCTC 0048, Biotechnol. Lett. 15, 1017-1020 https://doi.org/10.1007/BF00129929
  32. Ashby, R. D., D. K. Y. Solaiman, and T. A. Foglia (2002), The synthesis of short and medium-chain-length poly(hydroxyalkanoates) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans, J. Ind. Microbiol. Biotechnol. 28, 147-153 https://doi.org/10.1038/sj.jim.7000231
  33. Guo-Qiang, C., X. Jun, W. Qiong, Z. Zengming, and H. Kwok- Ping (2001), Synthesis of copolyesters consisting of medium-chain-length polyhydroxyalkanoates by Pseudomonas stutzeri 1317, React. Funct. Polym. 48, 107-112 https://doi.org/10.1016/S1381-5148(01)00042-6
  34. Kato, M., H. J. Bao, C. K. Kang, T. Fukui, and Y. Doi (1996), Production of a novel copolyester of 3-hydroxybutyric acids and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars, Appl. Microbiol. Biotechnol. 45, 363-370 https://doi.org/10.1007/s002530050697
  35. Ahn, W. S., S. J. Park, and S. Y. Lee (2000), Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution, Appl. Environ. Microbiol. 66, 3624-3627 https://doi.org/10.1128/AEM.66.8.3624-3627.2000
  36. Choi, J. and S. Y. Lee (1999), High-level production of poly(3- hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli, Appl. Environ. Microbiol. 65, 4363-4368
  37. Park, S. J., W. S. Ahn, P. R. Green, and S. Y. Lee (2001), Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3- hydroxyhexanoate) by metabolically engineered Escherichia coli strains, Biotechnol. Bioeng. 74, 81-86
  38. Steinbuchel, A. (2001), Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example, Macromol. Biosci. 1, 1-24 https://doi.org/10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B
  39. Potter, M. and A. Steinbuchel (2005), Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation, Biomacromolecules 6, 552-560 https://doi.org/10.1021/bm049401n
  40. Brandl, H., E. J. Knee, R. C. Fuller, R. A. Gross, and R. W. Renz (1989), Ability of the phototrophic bacterium Rhodospirillum rubum to produce various poly($\beta$-hydroxyalkanoates): potential sources for biodegradable polyester, Int. J. Biol. Macromol. 11, 49-55 https://doi.org/10.1016/0141-8130(89)90040-8
  41. Haywood, G. W., A. J. Anderson, G. A. Williams, E. A. Dawes, and D. F. Ewing (1991), Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126, Int. J. Biol. Macromol. 13, 83-87 https://doi.org/10.1016/0141-8130(91)90053-W
  42. Lee, S. H., D. H. Oh, W. S. Ahn, Y. Lee, J. Choi, and S. Y. Lee (2000), Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila, Biotechnol. Bioeng. 67, 240-244 https://doi.org/10.1002/(SICI)1097-0290(20000120)67:2<240::AID-BIT14>3.0.CO;2-F
  43. Doi, Y., S. Kitamura, and H. Abe (1995), Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, Macromolecules 28, 4822-4828 https://doi.org/10.1021/ma00118a007
  44. Kasuya, K., Y. Inoue, and Y. Doi (1996), Adsorption kinetics of bacterial PHB depolymerase on the surface of polyhydroxyalkanoate films, Int. J. Biol. Macromol. 19, 35-40 https://doi.org/10.1016/0141-8130(96)01097-5
  45. Kasuya, K. T. Ohura, K. Masuda, and Y. Doi (1999), Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases, Int. J. Biol. Macromol. 24, 329-336 https://doi.org/10.1016/S0141-8130(99)00046-X
  46. Kikkawa, Y., M. Fujitam, T. Hiraishi, M. Yoshimoto, and Y. Doi (2004), Direct observation of poly(3-hydroxybutyrate) depolymerase adsorbed on polyester thin film by atomic force microscopy, Biomacromolecules 5, 1642-1646 https://doi.org/10.1021/bm0497522
  47. Shinomiya, M., T. Iwata, and Y. Doi (1998), The adsorption of substrate-binding domain of PHB depolymerases to the surface of poly(3-hydroxybutyric acid), Int. J. Biol. Macromol. 22, 129-135 https://doi.org/10.1016/S0141-8130(98)00007-5
  48. Jain, K. K. (2000), Applications of biochip and microarray systems in pharmacogenomics, Pharmacogenomics 1, 289-307 https://doi.org/10.1517/14622416.1.3.289
  49. Rajagopal, K. and J. P. Schneider (2004), Self-assembling peptides and proteins for nanotechnological applications, Curr. Opin. Struct. Biol. 14, 480-486 https://doi.org/10.1016/j.sbi.2004.06.006
  50. MacBeath, G. and Schreiber, S. L. (2000), Printing proteins as microarrays for high-throughput function determination, Science 289, 1760-1763
  51. Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber (2001), Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Eng. 3, 335-373 https://doi.org/10.1146/annurev.bioeng.3.1.335
  52. Park, T. J., J. P. Park, S. J. Lee, H. J. Hong, and S. Y. Lee (2006), Polyhydroxyalkanoate chip for the specific immobilization of recombinant proteins and its applications in immunodiagnostics, Biotechnol. Bioprocess Eng. 11, 173-177 https://doi.org/10.1007/BF02931904
  53. Park, J. P., K.-B. Lee, S. J. Lee, T. J. Park, M. G. Kim, B. H. Chung, Z.-W. Lee, I. S. Choi, and S. Y. Lee (2005), Micropatterning proteins on polyhydroxyalkanoate substrates by using the substrate binding domain as a fusion partner, Biotechnol. Bioeng. 92, 160-165 https://doi.org/10.1002/bit.20581
  54. Lee, S. J., J. P. Park, T. J. Park, S. Y. Lee, S. Lee, and J. K. Park (2005), Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads, Anal. Chem. 77, 5755-5759 https://doi.org/10.1021/ac0505223
  55. Bouaidat, S., C. Berendsen, P. Thomsen, S. G. Petersen, A. Wolff, and J. Jonsmann (2004), Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications, Lab Chip 4, 632-637 https://doi.org/10.1039/b406285j
  56. Ito, Y. (2000), Micropattern immobilization of polysaccharide, J. Inorg. Biochem. 79, 77-81 https://doi.org/10.1016/S0162-0134(99)00159-2
  57. Lee, K., F. Pan, G. T. Carroll, N. J. Turro, and J. T. Koberstein (2004), Photolithographic technique for direct photochemical modification and chemical micropatterning of surfaces, Langmuir 20, 1812-1818 https://doi.org/10.1021/la0358163
  58. Tanaka, M., A. P. Wong, F. Rehfeldt, M. Tutus, and S. Kaufmann (2004), Selective deposition of native cell membranes on biocompatible micropatterns, J. Am. Chem. Soc. 126, 3257-3260 https://doi.org/10.1021/ja038981d
  59. Gangrade, N. and J. C. Price (1991), Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties, J. Microencapsul. 8, 185-202 https://doi.org/10.3109/02652049109071487