DOI QR코드

DOI QR Code

SURFICIAL DISINFECTION OF ESCHERIACHIA COLI-CONTAMINATED PLAYGROUND SOIL BY UV IRRADIATION

  • Kim, Jae-Eun (School of Chemical and Biological Eng., College of Engineering, Seoul National University) ;
  • Kim, Tong-Soo (Department of Malaria and Parasitic diseases, National Institute of Health) ;
  • Cho, Shin-Hyeong (Department of Malaria and Parasitic diseases, National Institute of Health) ;
  • Cho, Min (School of Chemical and Biological Eng., College of Engineering, Seoul National University) ;
  • Yoon, Je-Yong (School of Chemical and Biological Eng., College of Engineering, Seoul National University) ;
  • Shea, Patrick J. (School of Natural Resources and Center for Environmental Toxicology, University of Nebraska-Lincoln) ;
  • Oh, Byung-Taek (Department of Environmental Sciences & Biotechnology, Hallym University)
  • 발행 : 2007.04.30

초록

The necessity of disinfecting playground soil is an important issue, because pathogenic protozoa, bacteria, and parasite eggs remain viable for several months and can infect children. UV irradiation has been used to decontaminate water but its effectiveness on soil is unclear. We determined the efficacy of UV radiation for inactivation of an indicator bacteria, E. coli (strain ATCC 8739), on playground soil. While 99% inactivation of E. coli in the soil was readily achieved by UV radiation within 55 min at $0.4\;mW\;cm^{-2}$, complete inactivation was not achieved, even after prolonged treatment at $4\;mW\;cm^{-2}$. This was attributed to the irregular surface of the soil. A small number of E. coli escaped the UV radiation because they were situated in indentations or under small particles on the soil surface. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that the surface characteristics of the soil is the major limiting factor in the inactivation of E. coli by UV radiation. Thus UV treatment may not be adequate for disinfecting some soils and should be carefully evaluated before being used on playground soils.

키워드

참고문헌

  1. U.S. Environmental Protection Agency, 'Ultraviolet light disinfection technology in drinking water application-an overview,' Office of water, U.S. Environmental Protection Agency, Washington, D.C. EPA 811-R-96-002 (1996)
  2. U.S. Environmental Protection Agency, 'Alternative disinfectants and oxidants guidance manual,' Office of water, U.S. Environmental Protection Agency, Washington, D.C. EPA 815-R-99-014 (1999)
  3. Cho, M., Chung, H., and Yoon, J., 'Disinfection of water containing natural organic matter with ozone initiated radical reactions,' Appl. Environ. Microbiol., 69, 2284-2291 (2003) https://doi.org/10.1128/AEM.69.4.2284-2291.2003
  4. Kim, J., Cho, M., Oh, B., Choi, S., and Yoon, J., 'Control of bacterial growth in water using synthesized inorganic disinfectant,' Chemosphere, 55, 775-780 (2004) https://doi.org/10.1016/j.chemosphere.2003.11.014
  5. Alonso, J. M., Stein, M., Chamorro, M. C., and Bojanich, M. V., 'Contamination of soils with eggs of Toxocara in a subtropical city in Argentina,' J. Helminthol., 75, 165-168 (2001)
  6. Nunes, C. M., Pena, F. C., Negrelli, G. B., Anjo, C. G., Nakano, M. M., and Stobbe, N. S., 'Presence of larva migrans in sand boxes of public elementary schools, Aracatuba, Brazil,' Rev. Saude. Publ., 34, 656-658 (2000) https://doi.org/10.1590/S0034-89102000000600015
  7. Duwel, D., 'The prevalence of Toxocara eggs in the sand in children's playgrounds in Frankfurt/M,' Ann. Trop. Med. Parasit., 78, 633-636 (1984) https://doi.org/10.1080/00034983.1984.11811875
  8. Schaffert, R. M., and Strauch, D., 'Naturally infected dog droppings from public parks and playgrounds as a possible source of infections with Salmonellae and helminthes,' Ann. Ist. Super Sanita., 14, 295-300 (1978)
  9. Giacometti, A., Cirioni, O., Fortuna, M., Osimani, P., Antonicelli, L., Del Prete, M. S., Riva, A., D'Errico, M. M., Petrelli, E., and Scalise, G., 'Environmental and serological evidence for the presence of toxocariasis in the urban area of Ancona, Italy,' Eur. J. Epidemiol., 16, 1023-1026 (2000) https://doi.org/10.1023/A:1010853124085
  10. Shimizu, T., 'Prevalence of Toxocara eggs in sandpits in Tokushima city and its outskirts,' J. Vet. Med. Sci., 55, 807-811 (1993) https://doi.org/10.1292/jvms.55.807
  11. Moon, S. K., 'A study on the parasite eggs in soil of playground,' Gyeonggi-do Public Health & Environment Research Institude, Suwon, Korea (2002)
  12. Kunte, D. P., Yoele, T. Y., and Ranade, D. R., 'Inactivaion of Vibrio cholerae during anaerobic digestion of human night soil,' Bioresource Technol., 75, 149-151 (2000) https://doi.org/10.1016/S0960-8524(00)00051-1
  13. Lagapa, J. T. G., Konno, K., Oku, Y., Nonaka, N., and Kamiya, M., 'Inhibitory effect of different UV lamps on the infectivity of taeniid eggs,' Parasitol. Res., 87, 593-597 (2001) https://doi.org/10.1007/s004360100391
  14. Jenkins, M. B., Bowman, D. D., Forgarty, E. A., and Ghiorse, W. C., 'Cryptosporidium parvum oocyst inactivation in three soil types at various temperatures and water potentials,' Soil Biol. Biochem., 34, 1101-1109 (2002) https://doi.org/10.1016/S0038-0717(02)00046-9
  15. Jiang, X., Morgan,' J., and Doyle, M. P., 'Fate of Escherichia coli 0157:H7 in manureamended soil,' Appl. Environ. Microbiol., 68, 2605-2609 (2002) https://doi.org/10.1128/AEM.68.5.2605-2609.2002
  16. Tuominen, L., Kairesalo, T., and Hartikainen, H., 'Comparison of methods for inhibiting bacterial activity in sediment,' Appl. Environ. Microbiol., 60, 3454-3457 (1994)
  17. Trevors, J. T., 'Sterilization and inhibition of microbial activity in soil,' J. Microbiol. Meth., 26, 53-590 (1996) https://doi.org/10.1016/0167-7012(96)00843-3
  18. Mavrogianopoulos, G. N., Frangoudarkis, A., and Pandelakis, J., 'Energy efficient soil disinfestation by microwaves,' J. Agr. Eng. Res., 75, 149-153 (2000) https://doi.org/10.1006/jaer.1999.0492
  19. Jenkinson, D. S., and PowIson, D. S., 'The effects of biocidal treatments on metabolism in soil-I. fum igation with chloroform,' Soil Biol. Biochem., 8, 167-177 (1976a) https://doi.org/10.1016/0038-0717(76)90001-8
  20. Jenkinson, D. S., and Powlson, D. S., 'The effects of biocidal treatments on metabolism in soil-2. gamma irradiation, autoclaving, airdrying and fumigation,' Soil Biol. Biochem., 8, 179-188 (1976b) https://doi.org/10.1016/0038-0717(76)90002-X
  21. Nicholson, W. L., and Law, J. F., 'Method for purification of bacterial endospores from soils: UV resistance of natural Sonoran desert soil populations of Bacillus spp with reference to B. subtilis strain 168,' J. Microbiol. Meth., 35, 13-21 (1999) https://doi.org/10.1016/S0167-7012(98)00097-9
  22. Mancinelli, R. L., and Klovstad, M., 'Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces,' Planet. Space Sci., 48, 1093-1097 (2000) https://doi.org/10.1016/S0032-0633(00)00083-0
  23. Shin, G. A., Linden, K. G., Arrowood, M. J., and Sobsey, M. D., 'Low-pressure UV inactivation and DNA repair potential of Cryptosporidium parvum oocysts,' Appl. Environ. Microbiol., 67, 3029-3032 (2001) https://doi.org/10.1128/AEM.67.7.3029-3032.2001
  24. Arrowood, M. J., Churey, J. J., and Jackson, G. J., 'Inactivation of Cryptosporidium parvum oocysts in fresh apple cider by UV irradiation,' Appl. Environ. Microbiol., 68, 4168-4172 (2002) https://doi.org/10.1128/AEM.68.8.4168-4172.2002
  25. Campbell, A. T., and Wallis, P., 'The effect of UV irradiation on human-derived Giadia lamblia cysts,' Wat. Res., 36, 963-969 (2002) https://doi.org/10.1016/S0043-1354(01)00309-8
  26. Standard Methods for the Examination of Water and Wastewater, '19th edn, American Public Health Association/American Water Works Association/Water Environment Federation,' Washington. DC, USA (1995)
  27. Griffiths, B. S., and Ritz, K., 'A technique to extract, enumerate and measure protozoa from mineral soils,' Soil Biol. Biochem., 20, 163-173 (1988) https://doi.org/10.1016/0038-0717(88)90033-8
  28. Kantachote, D., Naidu, R., Singleton, I., McClure, N., and Harch, B. D., 'Resistance of microbial population in DDT-contaminated and uncontaminated soils,' Appl. Soil Ecol., 16, 85-90 (2001) https://doi.org/10.1016/S0929-1393(00)00058-5
  29. Springthorpe, V. S., and Scatter, S. A., 'Chemical disinfection of virus-contaminated surfaces,' CRC Rev. Environ. Contr., 20, 169-229 (1990) https://doi.org/10.1080/10643389009388396
  30. Klingeren, V. B., Kollar, W., Bloomfield, S. F., Bohm, R., Cremieux, A., Holah, J., Reybrouck, G., and Rodger, H. J., 'Assessment of the efficacy of disinfectants on surfaces,' Int. Biodeter. Biodegr., 41, 289-296 (1998) https://doi.org/10.1016/S0964-8305(98)00020-1
  31. Foschino, R., Nervegna, I., Motta, A., and Galli, A., 'Bactericidal activity of chlorine dioxide against Escherichia coli in water and on hard surfaces,' J. Food Prot., 61, 668-672 (1998) https://doi.org/10.4315/0362-028X-61.6.668
  32. Wu, A., Yu, L., Li, Z., Yang, H., and Wang, E., 'Atomic force microscope investigation of large-circle DNA molecules,' Anal. Biochem., 325, 293-300 (2004) https://doi.org/10.1016/j.ab.2003.11.005

피인용 문헌

  1. Comparative Quantification of LacZ (β-galactosidase) Gene from a Pure Cultured Escherichia coli K-12 vol.14, pp.1, 2007, https://doi.org/10.4491/eer.2009.14.1.063