Abstract
This paper presents a method of colored object extraction from an image using the fuzzy neural network. Fuzzy neural network divides an image into two clusters. It extracts the prototypes of Cb and Cr of object and background by controlling the vigilance parameter. The proposed method extracted object regardless of the position, the size, and the intensity of object. We compared the performance of the proposed method with that of the method of using subjective threshold value. And, we compared the performance of the proposed method with that of the method of using subjective threshold value by using several images with added noises.
본 논문에서는 퍼지 신경회로망을 사용하여 영상에서 색상을 가진 물체를 배경으로부터 추출해내는 방법을 제시하였다. 퍼지 신경회로망은 영상을 2개의 부류로 구성되어 있는 것으로 보고, 임계 파라미터를 조종하여 물체 영역의 Cb와 Cr의 대표값들과 배경영역의 Cb와 Cr의 대표값들을 추출하였다. 이 대표값들을 이용하여 색상을 가진 물체를 배경으로부터 추출하였다. 제안한 방법은 물체의 위치 및 크기와 밝기에 상관없이 물체를 추출하였다. 여러 가지 영상들을 사용하여 제안한 방법의 성능과 주관적 임계값을 사용한 방법의 성능을 비교하였다. 또한 영상들에 잡음을 첨가하여 제안한 방법의 성능과 주관적 임계값을 사용한 방법의 물체를 추출하는 능력을 비교하였다.