Abstract
Long gene sequences and their products have been studied by many methods. The use of DNA(Deoxyribonucleic acid) microarray technology has resulted in an enormous amount of data, which has been difficult to analyze using typical research methods. This paper proposes that mass data be analyzed using division clustering with the K-means clustering algorithm. To demonstrate the superiority of the proposed method, it was used to analyze the microarray data from rice DNA. The results were compared to those of the existing K-meansmethod establishing that the proposed method is more useful in spite of the effective reduction of performance time.
많은 유전자 정보와 그 부산물은 많은 방법을 통해 연구되어 왔다. DNA 마이크로어레이 기술의 사용은 많은 데이터를 가져왔으며, 이렇게 얻은 데이터는 기존의 연구 방법으로는 분석하기 힘들다. 본 논문에서는 많은 양의 데이터를 처리할 수 있게 하기 위하여 K-means 클러스터링 알고리즘을 이용한 분할 클러스터링을 제안하였다. 제안한 방법을 쌀 유전자로부터 나온 마이크로어레이 데이터에 적용함으로써 제안된 클러스터링 방법의 유용성을 검증하였으며, 기존의 K-means 클러스터링 알고리즘을 적용한 결과와 비교함으로써 제안된 알고리즘의 우수성을 확인할 수 있었다.