Metagenomic Analysis of BTEX-Contaminated Forest Soil Microcosm

  • Ji, Sang-Chun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Doc-Kyu (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Yoon, Jung-Hoon (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Choong-Hwan (Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2007.04.30

Abstract

A microcosmal experiment using a metagenomic technique was designed to assess the effect of BTEX (benzene, toluene, ethylbenzene, and xylenes) on an indigenous bacterial community in a Daejeon forest soil. A compositional shift of bacterial groups in an artificial BTEX-contaminated soil was examined by the 16S rDNA PCR-DGGE method. Phylogenetic analysis of 16S rDNAs in the dominant DGGE bands showed that the number of Actinobacteria and Bacillus populations increased. To confirm these observations, we performed PCR to amplify the 23S rDNA and 16S rDNA against the sample metagenome using Actinobacteria-targeting and Bacilli-specific primer sets, respectively. The result further confirmed that a bacterial community containing Actinobacteria and Bacillus was affected by BTEX.

Keywords

References

  1. Altschul, S., T. Madden, A. Schaffer, J. H. Zhang, Z. Zhang, W. Miller, and D. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Barker, J. F., G. C. Patrick, and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Water Monit. Rev. 7: 64-7l
  3. Blackwood, C. B., A. Oaks, and J. S. Buyer. 2005. Phylum-and class-specific PCR primers for general microbial community analysis. Appl. Environ. Microbiol. 71: 6193-6198 https://doi.org/10.1128/AEM.71.10.6193-6198.2005
  4. Cho, W. S., E.-H. Lee, E.-H. Shim, J. S. Kim, H. W. Ryu, and K.-S Cho. 2005. Bacterial communities of biofilms sampled from seepage groundwater contaminated with petroleum oil. J. Microbiol. Biotechnol. 15: 952-964
  5. Evans, F. F., L. Seldin, G. V. Sebastian, S. Kjelleberg, C. Holmstrom, and A. S. Rosado. 2004. Influence of petroleum contamination and biostimulation treatment on the diversity of Pseudomonas spp. in soil microcosms as evaluated by 16S rRNA-based PCR and DGGE. Lett. Appl. Microbiol. 38: 93-98 https://doi.org/10.1111/j.1472-765X.2003.01455.x
  6. Gao, B. and S. Gupta. 2005. Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int. J. Syst. Evol. Microbiol. 55: 2401-2412 https://doi.org/10.1099/ijs.0.63785-0
  7. Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60-63 https://doi.org/10.1038/345060a0
  8. Greene, E. A., J. G. Kay, K. Jaber, L. G. Stehmeirer, and G. Voordouw. 2000. Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl. Environ. Microbiol. 66: 5282-5289 https://doi.org/10.1128/AEM.66.12.5282-5289.2000
  9. Hanson, J. R., J. L. Macalady, D. Harris, and K. M. Scow. 1999. Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65: 5403-5408
  10. Head, I. M., J. R. Sauders, and R. W. Pickup. 1998. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated micro-organisms. Microb. Ecol. 35: 1-21 https://doi.org/10.1007/s002489900056
  11. Hendrickx, B., W. Dejonghe, F. Faber, W. Boenne, L. Bastiaens, W. Verstraete, E. M. Top, and D. Springael. 2006. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol. Ecol. 55: 262-273 https://doi.org/10.1111/j.1574-6941.2005.00018.x
  12. Heuer, H. and K. Smalla. 1997. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities, pp. 353-373. In J. D. van Elsas, E. M. H. Wellington, and J. T Trevors (eds.), Modern Soil Microbiology. Marcel Dekker, Inc., New York, N.Y
  13. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 6793-6774
  14. Ji, S. C., D. Kim, J.-H. Yoon, T.-K Oh, and C.-H. Lee. 2006. Sequence-baced screening for putative polyketide synthase gene-harboring clones from a soil metagenomic library. J. Microbiol. Biotechnol. 16: 153-157
  15. Junca, H. and D. H. Pieper. 2004. Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: Comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ. Microbiol. 6: 95-100 https://doi.org/10.1046/j.1462-2920.2003.00541.x
  16. Kim, M.-S., J.-H. Ahn, M.-K. Jung, J.-H. Yu, D. Joo, M.-C. Kim, H.-C. Shin, T. S. Kim, T-H. Ryu, S.-J. Kweon, T. S. Kim, D.-H. Kim, and J.-O. Ka. 2005. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  17. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522
  18. Lovely, D. R. 2001. Bioremediation. Science 293: 1444-1446 https://doi.org/10.1126/science.1063294
  19. Macnaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y.-J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
  20. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, J. M. Stredwick, G. M. Arrity, B. Li, G. J. Olsen, S. Pramanik, T. M. Schmidt, and J. M. Tiedje. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
  21. Meier, H., R. Amann, W. Ludwig, M. Wagner, and K.-H. Schleifer. 1999. Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol. 15: 593-600
  22. Moon, H. S., H.-Y Kahng, J. Y. Kim, J. J. Kukor, and K. Nam. 2006. Determination of biodegradation potential by two culture-independent methods in PAH-contaminated soils. Environ. Poll. 140: 536-545 https://doi.org/10.1016/j.envpol.2005.06.028
  23. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  24. Quan, Z.-X., S.-K. Rhee, J.-W. Bae, J.-H. Baek, Y.-H. Park, and Sung-Taik Lee. 2006. Bacterial community structure in activated sludge reactors treating free or metal-complexed cyanides. J. Microbiol. Biotechnol. 2: 232-249
  25. Roller, C., W. Ludwig, and K. H. Schleifer. 1992. Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23 rDNA genes. J. Gen. Microbiol. 138: 167-175
  26. Rosado, A. S., G. R. Duarte, L. Seldin, and J. D. van Elsas. 1998. Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl. Environ. Microbiol. 64: 2770-2779
  27. Sigler, W. V., C. Miniaci, and J. Zeyer. 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J. Microbiol. Methods 57: 17-22 https://doi.org/10.1016/j.mimet.2003.11.011
  28. Wilcoxson, J. E. 2005. Development of TRF assay for detection of Actinobacteria. MS thesis. California Polytechnic State University, San Luis Obispo, U.S.A