Effect of Dietary Inclusion of Lactobacillus acidophilus ATCC 43121 on Cholesterol Metabolism in Rats

  • Park, Yoo-Heon (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jong-Gun (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Shin, Yong-Won (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Sae-Hun (Division of Food Science, College of Life Sciences and Biotechnology, Korea University) ;
  • Whang, Kwang-Youn (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 발행 : 2007.04.30

초록

This study examined the effects of Lactobacillus acidophilus ATCC 43121 (LAB) on cholesterol metabolism in hypercholesterolemia-induced rats. Four treatment groups of rats (n=9) were fed experimental diets: normal diet, normal $diet+LAB(2{\times}10^6\;CFU/day)$, hypercholesterol diet (0.5% cholesterol, w/w), and hypercholesterol diet+LAB. Body weight, feed intake, and feed efficiency did not differ among the four groups. Supplementation with LAB reduced total serum cholesterol (25%) and VLDL+IDL+LDL cholesterol (42%) in hypercholesterol diet groups, although hepatic tissue cholesterol and lipid contents were not changed. In the normal diet group, cholesterol synthesis (HMG-CoA reductase expression), absorption (LDL receptor expression), and excretion via bile acids (cholesterol $7{\alpha}-hydroxylase$ expression) were increased by supplementation with LAB, and increased cholesterol absorption and decreased excretion were found in the hypercholesterol diet group. Total fecal acid sterols excretion was increased by supplementation with LAB. With proportional changes in both normal and hypercholesterol diet groups, primary bile acids (cholic and chenodeoxycholic acids) were reduced, and secondary bile acids (deoxycholic and lithocholic acids) were increased. Fecal neutral sterol excretion was not changed by LAB. In this experiment, the increase in insoluble bile acid (lithocholic acid) reduced blood cholesterol level in rats fed hypercholesterol diets supplemented with LAB. Thus, in the rat, L. acidophilus ATCC 43121 is more likely to affect deconjugation and dehydroxylation during cholesterol metabolism than the assimilation of cholesterol into cell membranes.

키워드

참고문헌

  1. American Institute of Nutrition. 1977. Report of American Institute of Nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 107: 1340-1348 https://doi.org/10.1093/jn/107.7.1340
  2. American Institute of Nutrition. 1980. Report of American Institute of Nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 110: 1726
  3. Bottazzi, V., C. Zacconi, E. Gorzaga, and M. Paladino. 1986. Absorption of cholesterol by intestinal lactic acid bacteria. Annali di Microbiologia 36: 1-6
  4. Brown, M. S. and J. L. Goldstein. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34-47 https://doi.org/10.1126/science.3513311
  5. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159
  6. Cill, H. S. and F. Guarner. 2004. Probiotics and human health: A clinical perspective. Postgrad. Med. J. 80: 516-526 https://doi.org/10.1136/pgmj.2003.008664
  7. Danielson, A. D., E. R. J. Peo, K. M. Shahani, A. J. Lewis, P. J. Whalen, and M. A. Amer. 1989. Anticholesterolemic property of Lactobacillus acidophilus yogurt fed to mature boars. J. Anim. Sci. 67: 966-974 https://doi.org/10.2527/jas1989.674966x
  8. de Rodas, B. Z., S. E. Gilliland, and C. V. Maxwell. 1996. Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. J. Dairy Sci. 79: 2121-2128 https://doi.org/10.3168/jds.S0022-0302(96)76586-4
  9. De Smet, I., L. Van Hoorde, N. De Sayer, M. Vande Woestyne, and W. Verstraete. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb. Ecol. Health Dis. 7: 315-329 https://doi.org/10.3109/08910609409141371
  10. De Smet, I., P. De Boever, and W. Verstraete. 1998. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79: 185-194 https://doi.org/10.1079/BJN19980030
  11. Folch. J., M. Lees, and G. H. S. Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509
  12. Fukushima, M. and M. Nakano. 1995. Effect of probiotic on faecal and liver lipid class in rats. Br. J. Nutr. 73: 701-710 https://doi.org/10.1079/BJN19950074
  13. Fukushima, M. and M. Nakano. 1996. Effect of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rat fed on a fat- and cholesterol-enriched diet. Br. J. Nutr. 76: 857-867 https://doi.org/10.1079/BJN19960092
  14. Gilliland, S. E. and D. K. Walker. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in human. J. Dairy Sci. 73: 905-911 https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  15. Gilliland, S. E., C. R. Nelson, and C. V. Maxwell. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381
  16. Gilliland, S. E., C. R. Nelson, and M. L. Speck. 1997. Deconjugation of bile acid by intestinal lactobacilli. Environ. Microbiol. 33: 15-18
  17. Goldstein, J. L. and M. S. Brown. 1990. Regulation of the mevalonate pathway. Nature 343: 425-428 https://doi.org/10.1038/343425a0
  18. Grundy, S. M., E. H. Ahrens, and T. A. Miettinen. 1965. Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J. Lipid Res. 6: 397-410
  19. Grunewald, K. K. 1982. Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus. J. Food Sci. 47: 2078-2079 https://doi.org/10.1111/j.1365-2621.1982.tb12955.x
  20. Ha, C. G, J. K. Cho, C. H. Lee, Y. G. Chai, Y. A. Ha, and S. H. Shin. 2006. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J. Microbiol Biotechnol. 16: 1201-1209
  21. Han, S. Y., C. S. Huh, Y. T. Ahn, K. S. Lim, Y. J. Baek, and D. H. Kim. 2005. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890
  22. Harrison, V. C. and G. Peat. 1975. Serum cholesterol and bowel flora in the newborn. Am. J. Clin. Nutr. 28: 1351-1355 https://doi.org/10.1093/ajcn/28.12.1351
  23. Hong, K. H., K. H. Jang, J. C. Lee, S. H. Kim, M. K. Kim, I. Y. Lee, S. M. Kim, Y. H. Lim, and S. A. Kang. 2005. Bacterial $\beta$-glucan exhibits potent hypoglycemic activity via decreased of serum lipids and adiposity, and increase of UCP mRNA expression. J. Microbiol. Biotechnol. 15: 823-830
  24. Kannel, W. B., J. T. Doyle, A. M. Ostfeld, C. D. Jenbins, L. Kuller, R. N. Podell, and J. Stamler. 1984. Optimal resources for primary prevention of atherosclerotic disease. Circulation 70: 155A-205A
  25. Keys, A. 1984. Serum cholesterol response to dietary cholesterol. Am. J. Clin. Nutr. 40: 351-359 https://doi.org/10.1093/ajcn/40.2.351
  26. Lee, I. A., S. W. Min, and D. H. Kim. 2006. Lactic acid bacteria increases hypolipidemic effect of crocin isolated from fructus of Gardenia jasminoids. J. Microbiol. Biotechnol. 16: 1084-1089
  27. Levy, R. I. 1981. Cholesterol, lipoproteins and heart disease: Present status and future prospects. Clin. Chem. 27: 653-662
  28. Lipid Research Clinics Program. 1984. The lipid research clinics coronary primary prevention trial results. I, II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 351-374 https://doi.org/10.1001/jama.251.3.351
  29. Massimi, M., S. R. Lear, S. L. Huling, A. L. Jones, and S. K. Erickson. 1998. Cholesterol 7$\alpha$-hydroxylase (CYP7A): Patterns of messenger RNA expression during rat liver development. Hepatology 28: 1064-1072 https://doi.org/10.1002/hep.510280422
  30. Mayes, P. A. and K. M. Botham. 2003. Lipid transport and storage, pp. 205-218. In P. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell (eds.), Harper's Illustrated Biochemistry, 26th Ed. Mc-Graw-Hill Companies, New York, NY
  31. Mayes, P. A. and K. M. Botham. 2003. Cholesterol synthesis, transport, and excretion, pp. 219-230. In P. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell (eds.), Harper's Illustrated Biochemistry, 26th Ed. Mc-GrawHill Companies, New York, NY
  32. Noh, D. O., S. H. Kim, and S. E. Gilliland. 1997. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci. 80: 3107-3113 https://doi.org/10.3168/jds.S0022-0302(97)76281-7
  33. Parks, D. J., S. G. Blanchard, R. K. Bledsoe, G. Chandra, T. G. Consler, S. A. Kliewer, J. B. Stimmel, T. M. Willson, A. M. Zavacki, D. D. Moore, and J. M. Lehmann. 1999. Bile acids: Natural ligands for an orphan nuclear receptor. Science 284: 1365-1368 https://doi.org/10.1126/science.284.5418.1365
  34. Rudling, M. 1992. Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo. J. Lipid Res. 33: 493-501
  35. SAS. 1988. SAS User's guide: Statistics. Ver. 6.2 Ed. SAS Institute Inc., Cary. NC. U.S.A
  36. Shefer, S., S. Hauser, V. Lapar, and E. H. Mosbach. 1972. HMG-CoA reductase of intestinal mucosa and liver of the rat. J. Lipid Res. 13: 402-412
  37. Suzuki, Y., H. Kaizu, and Y. Yamaguchi. 1991. Effect of culture milk on serum cholesterol concentrations in rats fed high-cholesterol diets. Anim. Sci. Tech. 62: 565-571
  38. Thakur, C. P. and A. N. Jha. 1981. Influence of milk yogurt and calcium on cholesterol-induced atherosclerosis in rabbits. Atherosclerosis 39: 211-215 https://doi.org/10.1016/0021-9150(81)90071-X
  39. Tortuero, F., A. Brences, and J. Rioperez. 1975. The influence of intestinal (ceca) flora on serum and egg yolk cholesterol levels in laying hens. Poult. Sci. 54: 1935-1938 https://doi.org/10.3382/ps.0541935
  40. Usman, and A. Hosono. 2001. Hypocholesterolemic effect of Lactobacillus gasseri SBT0270 in rats fed a cholesterol-enriched diet. J. Dairy Res. 68: 617-624