Cloning, Expression, and Characterization of a Cold-Adapted Lipase Gene from an Antarctic Deep-Sea Psychrotrophic Bacterium, Psychrobacter sp. 7195

  • Zhang, Jinwei (Key Laboratory of Marine Biogenetic Resources, State Oceanic Administration) ;
  • Lin, Shu (School of Life Sciences, University of Science and Technology of China) ;
  • Zeng, Runying (Key Laboratory of Marine Biogenetic Resources, State Oceanic Administration)
  • Published : 2007.04.30

Abstract

A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at $30^{\circ}C$, and was unstable at temperatures higher than $30^{\circ}C$, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24h incubation at $4^{\circ}C$. The addition of $Ca^{2+}\;and\;Mg^{2+}$ enhanced the enzyme activity of LipA1, whereas the $Cd^{2+},\;Zn^{2+},\;CO^{2+},\;Fe^{3+},\;Hg^{2+},\;Fe^{2+},\;Rb^{2+}$, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate $(C_{14}\;acyl\; groups)$.

Keywords

References

  1. Alquati, C., L. De Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321-3328 https://doi.org/10.1046/j.1432-1033.2002.03012.x
  2. Amada, K., M. Haruki, T. Imanaka, M. Morikawa, and S. Kanaya. 2000. Overproduction in Escherichia coli, purification and characterization of a family I.3 lipase from Pseudomonas sp. MIS38. Biochim. Biophys. Acta 1478: 201-210 https://doi.org/10.1016/S0167-4838(00)00046-7
  3. Arpigny, J. L. and K. E. Jaeger. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343 Pt 1: 177-183 https://doi.org/10.1042/0264-6021:3430177
  4. Arpigny, J. L., G. Feller, and C. Gerday. 1993. Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim. Biophys. Acta 1171: 331-333 https://doi.org/10.1016/0167-4781(93)90078-R
  5. Arpigny, J. L., G. Feller, and C. Gerday. 1995. Corrigendum to 'Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10' [Biochim. Biophys. Acta 1171 (1993) 331-333]. Biochim. Biophys. Acta. 1263: 103
  6. Breuil, C. and D. J. Kushner. 1975. Partial purification and characterization of the lipase of a facultatively psychrophilic bacterium (Acinetobacter O16). Can. J. Microbiol. 21: 434-441 https://doi.org/10.1139/m75-062
  7. Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491
  8. Feller, G. and C. Gerday. 2003. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 1: 200-208 https://doi.org/10.1038/nrmicro773
  9. Feller, G., M. Thiry, and C. Gerday. 1991. Nucleotide sequence of the lipase gene lip3 from the Antarctic psychotroph Moraxella TA144. Biochim. Biophys. Acta 1088: 323-324 https://doi.org/10.1016/0167-4781(91)90073-U
  10. Feller, G, M. Thiry, J. L. Arpigny, and C. Gerday. 1991. Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic Antarctic strain Moraxella TA144. Gene 102: 111-115 https://doi.org/10.1016/0378-1119(91)90548-P
  11. Feller, G., M. Thiry, J. L. Arpigny, M. Mergeay, and C. Gerday. 1990. Lipase from psychrotrophic Antarctic bacteria. FEMS. Microbiol. Lett. 66: 239-244 https://doi.org/10.1111/j.1574-6968.1990.tb04004.x
  12. Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. A. Meuwis, and G. Feller. 2000. Cold-adapted enzymes: From fundamentals to biotechnology. Trends. Biotechnol. 18: 103-107 https://doi.org/10.1016/S0167-7799(99)01413-4
  13. Iwai, M., Y. Tsujisaka, and J. Fukumoto. 1964. Studies on lipase. III. Effect of calcium ion on the action of the crystalline lipase from Aspergillus niger. J Gen. Appl. Microbiol. 10: 87-93 https://doi.org/10.2323/jgam.10.87
  14. Iwai, M., Y. Tsujisaka, and J. Fukumoto. 1970. Studies on lipase. V. Effect of iron ions on the Aspergillus niger lipase. J Gen. Appl. Microbiol. 1970: 81-90 https://doi.org/10.2323/jgam.16.1_81
  15. Jaeger, K., S. Ransac, B. Dijkstra, C. Colson, M. van Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  16. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  17. Jung, Y. J., H. K. Kim, J. F. Kim, S. H. Park, T. K. Oh, and J. K. Lee. 2005. A direct approach for finding functional lipolytic enzymes from the Paenibacillus polymyxa genome. J. Microbiol. Biotechnol. 15: 155-160
  18. Kojima, Y., M. Kobayashi, and S. Shimizu. 2003. A novel lipase from Pseudomonas fluorescens HU380: Gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. J Biosci. Bioeng. 96: 242-249 https://doi.org/10.1016/S1389-1723(03)80188-3
  19. Lee, Y. P., G. H. Chung, and J. S. Rhee. 1993. Purification and characterization of Pseudomonas fluorescens SIK W1 lipase expressed in Escherichia coli. Biochim. Biophys. Acta 1169: 156-164 https://doi.org/10.1016/0005-2760(93)90200-S
  20. Liu, W., T. Beppu, and K. Arima. 1973. Effect of various inhibitors on lipase action of thermophilic fungus Humicola lanuginosa S-38. Agric. Biol. Chem. 37: 2487-2492 https://doi.org/10.1271/bbb1961.37.2487
  21. Park, H., K. S. Lee, S. M. Park, K. W. Lee, A. Y. Kim, and Y. M. Chi. 2005. Relationship between enhancement of electrostriction and decrease of activation energy in porcine pancreatic lipase catalysis. J. Microbiol. Biotechnol. 15: 587-594
  22. Petersen, S. B. and F. Drablos. 1994. A sequence analysis of lipases, esterases and related proteins, pp. 23-48. In P. Woolley and S. B. Petersen (eds.), Lipases: Their Structure, Biochemistry and Application. Cambridge University Press, New York
  23. Rashid, N., Y. Shimada, S. Ezaki, H. Atomi, and T. Imanaka. 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069 https://doi.org/10.1128/AEM.67.9.4064-4069.2001
  24. Sambrook, J., E. Frisch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York
  25. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufuagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959-964 https://doi.org/10.1038/35023079
  26. Sugihara, A., Y. Shimada, and Y. Tominaga. 1990. Separation and characterization of two molecular forms of Geotrichum candidum lipase. J. Biochem. 107: 426-430 https://doi.org/10.1093/oxfordjournals.jbchem.a123061
  27. Surinenaite, B., V. Bendikiene, B. Juodka, I. Bachmatova, and L. Marcinkevichiene. 2002. Characterization and physicochemical properties of a lipase from Pseudomonas mendocina 3121-1. Biotechnol. Appl. Biochem. 36: 47-55 https://doi.org/10.1042/BA20020013
  28. Svendsen, A., K. Borch, M. Barfoed, T. B. Nielsen, E. Gormsen, and S. A. Patkar. 1995. Biochemical properties of cloned lipases from the Pseudomonas family. Biochim. Biophys. Acta 1259: 9-17 https://doi.org/10.1016/0005-2760(95)00117-U
  29. von Heijne, G 1990. The signal peptide. J. Membr. Biol. 115: 195-201 https://doi.org/10.1007/BF01868635
  30. Yang, J. S., G. J. Jeon, B. K. Hur, and J. W. Yang. 2005. Enzymatic methanolysis of castor oil for the synthesis of methyl ricinoleate in a solvent-free medium. J. Microbiol. Biotechnol. 15: 1183-1188