Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong (Agricultural Plant Stress Research Center and Environmental-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Han, Song-Hee (Agricultural Plant Stress Research Center and Environmental-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Zdor, Rob E. (Department of Biology Andrews University) ;
  • Anderson, Anne J. (Department of Biology, Utah State University) ;
  • Spencer, Matt (Department of Biology, Utah State University) ;
  • Yang, Kwang-Yeol (Agricultural Plant Stress Research Center and Environmental-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Yong-Hwan (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lee, Myung-Chul (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Cho, Baik-Ho (Agricultural Plant Stress Research Center and Environmental-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Young-Cheol (Agricultural Plant Stress Research Center and Environmental-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University)
  • Published : 2007.04.30

Abstract

Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

Keywords

References

  1. Audenaert, K., T. Pattery, P. Cornelis, and M. Hofte. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant Microbe Interact. 11: 1147-1156
  2. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current Protocols in Molecular Biology, Greene and Wiley Interscience, New York, U.S.A
  3. Bakker, A. W. and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biol. Biochem. 19: 451-457 https://doi.org/10.1016/0038-0717(87)90037-X
  4. Baron, S. S., G. Teranova, and J. J. Rowe. 1989. Molecular mechanism of the antimicrobial action of pyocyanin. Curr. Microbiol. 18: 223-230 https://doi.org/10.1007/BF01570296
  5. Blumer, C., S. Heeb, G. Pessi, and D. Haas. 1999. Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc. Natl. Acad. Sci. USA 96: 14073-14078
  6. Elhai, J. and C. P. Wolk. 1988. A versatile class of positive-selection vectors based on the non viability of palindrome-containing plasmids that allows cloning into long poly linkers. Gene 68: 119-138 https://doi.org/10.1016/0378-1119(88)90605-1
  7. Georgakopoulos, D. G., M. Hendson, N. J. Panopoulos, and M. N. Schroth. 1994. Analysis of expression of a phenazine biosynthetic locus from Pseudomonas aureofaciens PGS12 on seeds with a mutant carrying a phenazine biosynthesis locus-ice nucleation reporter gene fusion. Appl. Environ. Microbiol. 60: 4573-4579
  8. Gurley, H. G and R. E. Zdor. 2005. Differential rhizosphere establishment and cyanide production by alginate-formulated weed-deleterious rhizobacteria, Curr. Microbiol. 50: 167-171
  9. Haas, D. and C. Keel. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41: 117-153 https://doi.org/10.1146/annurev.phyto.41.052002.095656
  10. Hassan, H. M. and I. Fridovich. 1980. Mechanism of the antibiotic action of pyocyanine. J. Bacteriol. 141: 156-163
  11. Han, S. H., S. J. Lee, J. H. Moon, K. Y. Yang, B. H. Cho, K. Y. Kim, Y. W. Kim, M. C. Lee, A. J. Anderson, and Y. C. Kim. 2006. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant Microbe Interact. 19: 924-930 https://doi.org/10.1094/MPMI-19-0924
  12. Heeb, S. and D. Haas. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol. Plant Microbe Interact. 14: 1351-1363 https://doi.org/10.1094/MPMI.2001.14.12.1351
  13. Jung, J. H., D. H. Shin, W. C. Bae, S. K. Hong, J. W. Suh, S. H. Koo, and B. C. Jeong. 2002. Identification of FM001 as plant growth-promoting substance from Acremonium strictum MJN1 culture. J. Microbiol. Biotechnol. 12: 327-330
  14. Kang, B. R., B. H. Cho, A. J. Anderson, and Y. C. Kim. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325: 137-143 https://doi.org/10.1016/j.gene.2003.10.004
  15. Kim, M. S., Y. C. Kim, and B. H. Cho. 2004. Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant Biol. 6: 105-108 https://doi.org/10.1055/s-2004-817803
  16. King, E. O., M. Ward, and D. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307
  17. Kremer, R. J. and T. Souissi. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43: 182-186 https://doi.org/10.1007/s002840010284
  18. Kropp, B. R., E. Thomas, J. I. Pounder, and A. J. Anderson. 1996. Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3 under field and laboratory conditions. Biol. Fertil. Soils 23: 200-206 https://doi.org/10.1007/BF00336064
  19. Lambert, J., J. Ramasamy, and J. Paukstells. 1975. Stable reagents for the colorimetric determination of cyanide by modified Konig reactions. Anal. Chem. 47: 916-918 https://doi.org/10.1021/ac60356a036
  20. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J Microbiol. Biotechnol. 12: 249-257
  21. Miller, C. D., Y. C. Kim, and A. J. Anderson. 2001. Competitiveness in root colonization by Pseudomonas putida requires the rpoS gene. Can. J. Microbiol. 47: 41-48 https://doi.org/10.1139/cjm-47-1-41
  22. Radtke, C. W., S. Cook, and A. J. Anderson. 1994. Factors affecting the growth antagonism of Phanerochaete chrysosporium by bacteria isolated from soils. Appl. Microbiol. Biotechnol. 41: 274-280 https://doi.org/10.1007/BF00186972
  23. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  24. Schippers, B., A. W. Bakker, P. Bakker, and R. Van Peer. 1990. Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interaction. Plant Soil 129: 75-83 https://doi.org/10.1007/BF00011693
  25. Slininger, P. J., J. E. Van Cauwenberge, R. J. Bothast, D. M. Weller, L. S. Thomashow, and R. J. Cook. 1996. Effect of growth culture physiological state, metabolites, and formulation and in the viability, phytotoxicity, and efficacy of the take-all biocontrol agent Pseudomonas fluorescens 2-79 stored encapsulated on wheat seeds. Appl. Microbiol. Biotechnol. 45: 391-398 https://doi.org/10.1007/s002530050701
  26. Spencer, M., C. M. Ryu, K. Y. Yang, Y. C. Kim, J. W. Kloepper, and A. J. Anderson. 2003. Induced defenses in tobacco by Pseudomonas chlororaphis O6 involves the ethylene pathway. Physiol. Mol. Plant Pathol. 67: 27-34
  27. Whiteley, M. and E. P. Greenberg. 2001. Promoter specificity elements in Pseudomonas aeruginosa quorum sensing controlled genes. J. Bacteriol. 183: 5529-5534 https://doi.org/10.1128/JB.183.19.5529-5534.2001
  28. Wood, D. W., F. Gong, M. M. Daykin, P. Williams, and L. S. Pierson III. 1997. N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J. Bacteriol. 179: 7663-7670
  29. Yang, Y. Y., X. Q. Zhao, Y. Y. Jin, J. H. Hur, J. H. Cheng, D. Singh, H. J. Kwon, and J. W. Suh. 2006. Novel function of cytokinin: A signal molecule for promotion of antibiotic production in Streptomycetes. J. Microbiol. Biotechnol. 16: 896-900