• Title/Summary/Keyword: GacS/GacA two-component system

Search Result 3, Processing Time 0.016 seconds

The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

  • Kim, Ji Soo;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.215-219
    • /
    • 2014
  • The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

Effect of gacS and gacA Mutations on Colony Architecture, Surface Motility, Biofilm Formation and Chemical Toxicity in Pseudomonas sp. KL28

  • Choi, Kyung-Soon;Veeraragouda, Yaligara;Cho, Kyoung-Mi;Lee, Soo-O;Jo, Geuk-Rae;Cho, Kyung-Yun;Lee, Kyoung
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.492-498
    • /
    • 2007
  • GacS and GacA proteins form a two component signal transduction system in bacteria. Here, Tn5 transposon gacS and gacA (Gac) mutants of Pseudomonas sp. KL28, an alkylphenol degrader, were isolated by selecting for smooth colonies of strain KL28. The mutants exhibited reduced ability to migrate on a solid surface. This surface motility does not require the action of flagella unlike the well-studied swarming motility of other Pseudomonas sp. The Gac mutants also showed reduced levels of biofilm and pellicle formation in liquid culture. In addition, compared to the wild type KL28 strain, these mutants were more resistant to high concentrations of m-cresol but were more sensitive to $H_2O_2$, which are characteristics that they share with an rpoS mutant. These results indicate that the Gac regulatory cascade in strain KL28 positively controls wrinkling morphology, biofilm formation, surface translocation and $H_2O_2$ resistance, which are important traits for its capacity to survive in particular niches.

Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong;Han, Song-Hee;Zdor, Rob E.;Anderson, Anne J.;Spencer, Matt;Yang, Kwang-Yeol;Kim, Yong-Hwan;Lee, Myung-Chul;Cho, Baik-Ho;Kim, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.586-593
    • /
    • 2007
  • Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.