DOI QR코드

DOI QR Code

Process Effect on the RMS Roughness of CuInSe2 Thin Films Grown by MOMBE

  • Ko, Young-Don (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Moon, Pyung (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Yun, Il-Gu (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Ham, Moon-Ho (Department of Metallurgical Engineering, Yonsei University) ;
  • Myoung, Jae-Min (Department of Metallurgical Engineering, Yonsei University)
  • Published : 2007.04.01

Abstract

In this paper, the process effect on the RMS roughness of the $HfO_2$ thin films grown by metal organic molecular beam epitaxy was investigated. The measured RMS roughness is examined to characterize the surface morphology. In order to analyze the factor effects, the significant factors of both the main and the interaction effects were extracted through the effect analysis. In order to compare the regression model with the variable transformation, the effect of each factor and the model efficiency are calculated. The methodology can allow us to analyze the effects between the process parameters related to the process variability.

Keywords

References

  1. D. K. Sarker, E. Desbiens, and M. A. EI Khakani, 'High-k titanium silicate dielectric thin films grown by pulsed-laser deposition', Appl. Phys. Lett., Vol. 80, No.2, p. 294, 2002
  2. D. Brassard, D. K. Sarkar, and M. A. Khakani, 'High-k titanium silicate thin films grown by reactive magnetron sputtering for complementary metal oxide semiconductor applications', J. Vac. Sci. Technol., Vol. A22, No.3, p. 851,2004
  3. D. Brassard, D. K. Sarkar, and M. A. Khankani, 'Tuning the electrical resistivity of pulse laser deposition TiSiOx thin films from highly insulating to conductive behaviors', Appl. Phys. Lett., Vol. 84, No. 13, p. 2304, 2004 https://doi.org/10.1063/1.1688999
  4. G. Scarel, S. Spiga, C. Wiemer, G. Tallarida, S. Ferrari, and M. Fanciulli, 'Trends of structural and electrical properties in atomic layer deposited $HfO_{2}$ films', Mater. Sci. Eng., Vol. 109, No. 1-3, p. 11, 2004 https://doi.org/10.1016/j.mseb.2003.10.021
  5. J. Aarik, H. Mander, M. Kirm, and L. pung, 'Optical characterization of $HfO_{2}$ thin films grown by atomic layer deposition', Thin Solid Films, Vol. 466, No. 1-2, p. 41, 2004 https://doi.org/10.1016/j.tsf.2004.01.110
  6. K.-Y. Cha, T.-Y. Tou, and B.-S. Teo, 'Effects of substrate temperature on electrical and structural of copper thin films', Microelectron. J., Vol. 37, p. 930,2006 https://doi.org/10.1016/j.mejo.2006.01.011
  7. K.-Y. Cha, T.-Y. Tou, and B.-S. Teo, 'Thickness dependence of the structural and electrical properties of copper films deposited by de magnetron sputtering technique', Microelectron. J., Vol. 37, p. 608, 2006 https://doi.org/10.1016/j.mejo.2005.09.016
  8. S. Samukawa and S. J. Hong, 'Statistical characterization fabricated charge-up damage sensor', Trans. EEM, Vol. 6, No.3, p. 87,2005
  9. Gary S. May, S.-S. Han, and S. J. Hong, 'Characterization of low-temperature SU-8 negative photoresist processing for MEMS applications', Trans. EEM, Vol. 6, No.4, p. 135,2005
  10. K. K. Low and Stephen W. Director, 'An efficient methodology for building macromodels of IC fabrication processes', IEEE Trans. Computer-Aided Design, Vol. 8, No. 212, p. 1299, 1989
  11. K. Park and I.-H. Ahn, 'Design of experiment considering two-way interactions and its application to injection molding processes with numerical analysis', J. Mater. Process. Tech., Vol. 146, p. 221, 2004 https://doi.org/10.1016/j.jmatprotec.2003.10.020
  12. M. Hajeeh, 'Estimating corrosion: a statistical approach', Mater. Desi., Vol. 24, p. 509,2003 https://doi.org/10.1016/S0261-3069(03)00110-9
  13. D. C. Montgomery, 'Design and Analysis of Experiments', New York: John Wiley & Sons, 1997
  14. R. H. Myers and D. C. Montgomery, 'Response Surface Methodology', New York: John Wiley & Sons, 1995