진동화강암체의 아다카이틱한 특성

Adakitic Signatures of the Jindong Granitoids

  • 위수민 (한국교원대학교 지구과학교육과) ;
  • 김윤지 (한국교원대학교 지구과학교육과) ;
  • 최선규 (고려대학교 지구환경시스템과학과) ;
  • 박정우 (고려대학교 지구환경시스템과학과) ;
  • 유인창 (경북대학교 지질학과)
  • Wee, Soo-Meen (Dept. of Earth Sciences, Korea National Univ. Education) ;
  • Kim, Yun-Ji (Dept. of Earth Sciences, Korea National Univ. Education) ;
  • Choi, Seon-Gyu (Dept. of Earth & Environmental Sciences, Korea Univ.) ;
  • Park, Jung-Woo (Dept. of Earth & Environmental Sciences, Korea Univ.) ;
  • Ryu, In-Chang (Dept. of Geology, Kyeongbuk National Univ.)
  • 발행 : 2007.04.28

초록

한반도 남동부에 위치한 경상분지와 일본의 서남내대는 중국 남동부에서부터 러시아 추콧(Chukot) 반도를 잇는 코딜레라형(Cordilleran-type)조산벨트의 동쪽 확장부로서 백악기와 제3기에 걸쳐 관입한 I-형의 칼크-알칼리 계열 화강암류가 광범위하게 분포하고 있으며, 이들은 이자나기(Izanagi)판의 섭입과 관련된 화성활동의 산물로 생각된다. 고지리적 위치, 고지구조적 환경 및 관입 시기$(120\sim100Ma)$가 진동화강암체와 유사한 일본 서남내대 큐슈 지역의 시라이시노(Shiraishino) 화강섬록암 및 산요벨트의 탐바(Tamba)화강암류는 높은 $SiO_2,\;Al_2O_3$, Sr, Sr/Y, La/Yb 및 낮은 Y, Yb 함량으로 특징지어지는 아다카이트(adakite)로 보고되었다. 진동화강암의 주성분원소$(Al_2O_3,\;K_2O,\;Na_2O,\;MgO)$ 및 미량원소(Sr, Y, Rb) 함량 범위는 일본 서남내대에 분포하는 백악기 아다카이트질 화강암의 범주에 포함되고, 아다카이트의 판별도로 가장 널리 이용되는 Sr/Y vs. Y 관계도에서 경상분지 내의 일반적인 백악기 화강암류가 호상열도형ADR(Island Arc ADR) 영역에 분포하는 것과 명확히 구분되어 진동화강암류는 아다카이트 범주에 점시된다. 진동화강암의 희토류원소 패턴은 경희토류원소가 부화되어$[(La/Yb)c=3.6\sim13.8]$ 나타난다. Rb-Sr 전암연대는 $114.6{\pm}9.1Ma$이며 $^{87}Sr/^{86}Sr$의 초생값은 0.70457로, 진동화강암체는 백악기 초기에 관입한 화강암체로서 근원물질이 상부맨틀과 밀접한 연관이 있음을 지시한다.

The eastern extension of the Cordilleran-type orogenic belt continues from southeastern China to the Chukot Peninsula through the Korean Peninsula. The Gyeongsang basin, located in the southeastern part of the Korean Peninsula and the Inner Zone of southwest Japan are characterized by extensive distribution of Cretaceous to Tertiary I-type calc-alkaline series of intrusive rocks. These intrusive rocks are possibly the result of intensive magmatism which occurred in response to the subduction of the Izanagi Plate beneath the northeastern part of the Eurasian Plate. The Jindong granitoids within the Gyeongsang basin are reported to be adakites, whose signatures are high $SiO_2,\;Al_2O_3$, Sr, Sr/Y La/Yb and, low Y and Yb contents. The major and trace element contents of the Jindong granitoids fall well within the adakitic field, whereas other Cretaceous granites in the same basin are plotted in the island arc ADR area in discrimination diagrams. Chondrite normalized REE patterns show generally enriced LREEs (La/Yb)C = 3.6-13.8) and slight negative to flat Eu anomalies. The mean Rb-Sr whole rock isotopic age of the Jindong granitoids is $114.6{\pm}9.1$ Ma with an initial Sr isotope ratio of 0.70457. These values suggest that the magma has mantle signature and intruded into the area during Early Cretaceous. The Jindong granitoids have similar paleogeographical locations, paleotectonic environments and intrusion ages to those of the Shiraishino granodiorites of Kyushu Island and the Tamba granitoids of San'yo belt located on southwestern Japanese arc.

키워드

참고문헌

  1. Atherton, M. P. and Petford, N. (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, v. 362, p. 144-146 https://doi.org/10.1038/362144a0
  2. Castillo, P. R., Janney, P. E. and Solidum, R. U. (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, v. 134, p. 3351
  3. Castillo, P. R. (2006) An overview of adakite petrogenesis. Chinese Science Bulletin, v. 51, p. 257-268 https://doi.org/10.1007/s11434-006-0257-7
  4. Cheong, C. S., Kwon, S. T., Kim, J. M. and Jang, B. W. (1998) Isotopic and geochemical compositions of Onjeongri granites in the northern Gyeongsang Basin. Journal of Petrological Society of Korea, v. 7, p. 77-97
  5. Cheong, C. S., Kwon, S. T. and Sagong, H. (2002) Geochemical and Sr-Nd-Pb isotopic investigation of Traiassic granitoids and basement rocks in the northern Gueongsang basin, Korea: Implications for the young basement in the East Asian continental margin. The Island Arc, v. 11, p. 25-44 https://doi.org/10.1046/j.1440-1738.2002.00356.x
  6. Choi, S. G., Ryu, I. C., Pak, S. J., Wee, S. M., Kim, C. S. and Park, M. E. (2005) Cretaceous epithermal goldsilver mineralization and geodynamic environment, Korea. Ore Geology Reviews, v. 26, p. 115-135 https://doi.org/10.1016/j.oregeorev.2004.10.005
  7. Choi, S. W. (1986) Genesis of copper deposits in Haman district. Ph. D. Thesis. Seoul National University. 116p
  8. Condie, K. C. (1989) Plate tectonics and crustal evolution (3rd ed.). Pergamon Press, New York, 476p
  9. Condie, K. C. (2005) TTGs and adakites: are they both slab melts? Lithos, v. 80, p. 33-44 https://doi.org/10.1016/j.lithos.2003.11.001
  10. Defant, M. J. and Drummond, M. S. (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, v. 347, p. 662-665 https://doi.org/10.1038/347662a0
  11. Defant, M. J. and Kepezhinskas, P. K. (2001) Evidence suggests slab melting in arc magmas. EOS Transactions, v. 82, p. 65-69
  12. Drummond, M. S. and Defant, M. J. (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research, v. 95, p. 21503-21521 https://doi.org/10.1029/JB095iB13p21503
  13. Drummond, M. S., Defant, M. J. and Kepezhinskas, P. K. (1996) Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society Edinburgh: Earth Sciences, v. 87, p. 205-215 https://doi.org/10.1017/S0263593300006611
  14. Gutscher, M. A., Maury, R., Eissen, J. P. and Bourdon, E. (2000) Can slab melting be caused by flat subduction?. Geological Society of America, v. 28, p. 535-538
  15. Guo, F., Fan, W. and Li, C. (2006) Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: magma genesis and implications for crustal recycling beneath continental collisional orogens. Geological Magazine, v. 143, p. 1-13 https://doi.org/10.1017/S0016756805001214
  16. Heo, C. H., Yun, S. T., Choi, C. H., Choi, S. G. and So, C. S. (2003) Copper mineralization in the Hana-Gunbuk area, Gyeosangnamdo province: Fluid inclusion and stable isotope study. Economic and Environmental Geology, v. 36, p. 75-87
  17. Hong, Y. K. (1987) Geochemical characteristics of Precambrian, Jurassic and Cretaceous granites in Korea. Journal of Korean Institute of Mining Geology, v. 20, p. 35-60
  18. Jin, M. S. (1980) Geology and Isotopic Contrasts of the Jurassic and the Cretaceous Granites in South Korea. The Journal of the Geological Society of Korea, v. 16, p. 205-215
  19. Jwa, Y. J. and Park, J. M. (1996) Petrology of the igneous rocks in the Goseng area, Gyeongsang basin. Major element geochemistry and K-Ar radiometric age. Economic and Environmental Geology, v. 29, p. 561-573
  20. Kagami, H., Iijumi, S., Tainosho, Y. and Owada, M. (1992) Spatial variations of Sr and Nd isotope ratios of Cretaceous-Paleogene granitoid rocks, southwest Japan arc. Contributions to Mineralogy and Petrology, v. 112, p. 165-177 https://doi.org/10.1007/BF00310452
  21. Kamei, A. (2004) An adakitic pluton on Kyushu Island, southwest Japan arc. Journal of Asian Earth Sciences, v. 24, p. 43-58 https://doi.org/10.1016/j.jseaes.2003.07.001
  22. Kay, R. W. (1978) Aleutian magnesian andesites; melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, v. 4, p. 117-132 https://doi.org/10.1016/0377-0273(78)90032-X
  23. Kiji, M., Ozawa, H. and Murata, M. (2000) Cretaceous adakitic Tamba granitoids in northern Kyoto, San'yo belt, southwest Japan. Japanese Magazine of Mineralogical and Petrological Sciences, v. 29, p. 136-149 https://doi.org/10.2465/gkk.29.136
  24. Kim, H. N. and Park, C. Y. (1995) Lithogeochemical and mineral chemistry features of granitoids and their relation to mineralization in the Namhae area. Journal of Korean Earth Science Society, v. 16, p.522-535
  25. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. and Zanettin, B. A. (1986) A chemical classification of volcanic rocks based on the total alkaline-silica diagram. Journal of Petrology, v. 27, p. 745-750 https://doi.org/10.1093/petrology/27.3.745
  26. Lee, J. D. (1987) Contact metamorphism on granitoids in the Chindong-Masan area, Gyeongsangnam-do. Ph. D. Thesis. Seoul National University, 115p
  27. Lee. J. D. (1991) Petrological study on granitoids in Chindong-Masan area, Gyeongsangnam-do, Journal of Korean Earth Sciences Society, v. 12, p. 230-247
  28. Lee. J. I. (1991) Petrology, Mineralogy and Isotopic Study of the Shallow-depth Emplaced Granitic Rocks, Southern Part of the Kyeongsang Basin, Korea -Origin of Micrographic Granite-. The Tokyo University, 231p
  29. Lee, J. I. (1997) Trace and rare earth element geochemistry of granitic rocks, southern part of the Kyongsang Basin, Korea. Geoscience Journal, v. 1, p. 167-178 https://doi.org/10.1007/BF02910224
  30. Lee, J. K. and Lee, J. Y. (1994) Trace element geochemistry and copper mineralization of Jindong granitic rocks. The Journal of the Geological Society of Korea. v. 30, p. 455-466
  31. Lee, S. M., Kim, S. W. and Jin, M. S. (1987)Igneous activities of the Cretaceous to the Early Tertiary and their tectonic implications in south Korea. Geology, v. 23, p. 338-359
  32. Macpherson, C. G., Dreher, S. T. and Thirlwall, M. F. (2006) Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, v. 243, p. 581-593 https://doi.org/10.1016/j.epsl.2005.12.034
  33. Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. and Champion, D. (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, v. 79, p. 1-24 https://doi.org/10.1016/j.lithos.2004.04.048
  34. Nakajima, T. (1996) Cretaceous granitoids in SW Japan and their bearing on the crust-forming process in the eastern Eurasian margin. Geological Society of America Special Papers, v. 315, p. 183-191
  35. Oh, C. W. (2006) A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research: International Geoscience Journal, v. 9, p. 47-61 https://doi.org/10.1016/j.gr.2005.06.001
  36. Otofuji, Y. and Matsuda, T. (1984) Timing of rotational motion of Southwest Japan inferred from paleomagnetism. Earth and Planetary Science Letters, v. 70, p. 373-382 https://doi.org/10.1016/0012-821X(84)90021-9
  37. Otofuji, Y., Matsuda, T. and Nohda, S. (1985) Opening mode of the Japan Sea inferred from the paleomagnitism of the Japan arc. Nature, v. 317, p. 603-604 https://doi.org/10.1038/317603a0
  38. Park, H. I., Choi, S. W., Chang, H. W. and Chae, D. H. (1985) Copper mineralization of the Hamman-Gunbuk mining district, Kyeongnam area. Journal of Korean Institute of Mining Geology, v. 18, p. 107-124
  39. Park, N. Y. and Chi, J. M. (1963) Explanatory text of the geological map of Chindongri-sheet, (1: 50,000). Geological Survey of Korea
  40. Park, S. K. (2004) Geochemistry of Gindong granites in Haman-Gunbuk district. Korea National University of Education, 41p
  41. Pearce, J. A., Harris, N. B. W. and Tindle, A. G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v. 25, p. 956-983 https://doi.org/10.1093/petrology/25.4.956
  42. Qian, Q., Chung, S. Lin., Lee, T. Y. and Wen, D. J. (2003) Mesozoic high-Ba-Sr granitoids from North China: geochemical characteristics and Geology implications. Terra nova, v. 15, p. 272-278 https://doi.org/10.1046/j.1365-3121.2003.00491.x
  43. Rollinson, H. and Martin, H. (2005) Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation-Introduction to the Special Issue. Lithos, v. 79, p. 9-12
  44. Sajona, F. G., Maury, R. C., Bellon, H. and Cotten, J. (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, v. 21, p. 1007-1010 https://doi.org/10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2
  45. Sajona, F. G., Maury, R. C., Pubellier, M., Leterrier, J., Bellon, H. and Cotten, J. (2000) Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos, v. 54, p. 173-206 https://doi.org/10.1016/S0024-4937(00)00019-0
  46. Sun, S. S. and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Magmatism in the ocean basins. Geological Society Special Publication, v. 42, p. 313-345
  47. Wang, Q., XU, J. F., Iian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong, X. L. and Ma, J. L. (2006) Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, v. 47, p. 119-144 https://doi.org/10.1093/petrology/egi070
  48. Wee, S. M., Choi, S. G., Ryu, I. C., and Shin, H. J. (2006) Geochemical characteristics of the Cretaceous Jindong granites in the southwestern part of the Gyeongsang basin, Korea : Focussed on Adakitic signatures, Korea Society of Economic and Environmental Geology, v. 39, p. 555-566
  49. Wilson, M. (1989) Igneous petrogenesis. Unwin Hyman, London, 466p
  50. Xiong, X. L., Xia, B., Xu, J. F., Niu, H. C. and Xiao, W. S. (2006) Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chemical Geology, v. 229, p. 273-292 https://doi.org/10.1016/j.chemgeo.2005.11.008
  51. XU, J. -F., Shinjo, R., Defant, M. J., Wang, Q. and Rapp, R. P. (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geological Society of America, v. 30, p. 1111-1114
  52. Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V. and Kay, S. M. (1995) Magnesium andesite in the western Aleutian Komandorsky region. Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, v. 107, p. 505-519 https://doi.org/10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
  53. Yogodzinski, G. M., Lees, J. M., Churikova, T. G., Dorendorf, F., Woerner, G. and Volynets, O. N. (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, v. 409, p. 500-504 https://doi.org/10.1038/35054039