GENERALIZED CUBIC MAPPINGS OF r-TYPE IN SEVERAL VARIABLES

  • Received : 2006.12.30
  • Published : 2007.03.31

Abstract

Let X, Y be vector spaces. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability problem for a cubic function $f:X{\rightarrow}Y$ satisfies $$r^3f(\frac{\Sigma_{j=1}^{n-1}x_j+2x_n}{r})+r^3f(\frac{\Sigma_{j=1}^{n-1}x_j-2x_n}{r})+8\sum_{j=1}^{n-1}f(x_j)=2f{\sum_{j=1}^{n-1}}x_j)+4{\sum_{j=1}^{n-1}}(f(x_j+x_n)+f(x_j-x_n))$$ for all $x_1,{\cdots},x_n{\in}X$.

Keywords