전북 장수군 대유 페그마타이트광산의 전기석에 포획된 유체포유물

Fluid Inclusions Trapped in Tourmaline from the Daeyou Pegmatite Deposit, Jangsu-Gun, Jeollabukdo

  • 이주연 (부산대학교 자연과학대학 지질환경과학) ;
  • 엄영보 (부산대학교 자연과학대학 지질환경과학) ;
  • 남복현 (부산대학교 자연과학대학 지질환경과학) ;
  • 황병훈 (부산대학교 자연과학대학 지질환경과학) ;
  • 양경희 (부산대학교 자연과학대학 지질환경과학)
  • Lee, Ju-Youn (Geological Environmental Science Major, College of Natural Sciences, Pusan National University) ;
  • Eom, Young-Bo (Geological Environmental Science Major, College of Natural Sciences, Pusan National University) ;
  • Nam, Bok-Hyun (Geological Environmental Science Major, College of Natural Sciences, Pusan National University) ;
  • Hwang, Byoung-Hoon (Geological Environmental Science Major, College of Natural Sciences, Pusan National University) ;
  • Yang, Kyoung-Hee (Geological Environmental Science Major, College of Natural Sciences, Pusan National University)
  • 발행 : 2007.03.30

초록

전북 장수군 대유광산에 부존하는 페그마타이트내 전기석에는 네 종류의 유체포유물이 풍부하게 포획되어 있다. 유체포유물의 크기는 $5{\sim}100\;{\mu}m$이고, 상온에서 관찰되는 상(phase)의 거동에 따라 I, II, III, IV형으로 분류된다. I형은 액체가 풍부하고 기포의 크기가 50 vol% 이하인 것으로 공융온도(eutectic point)는 $-54{\sim}-29^{\circ}C$, NaCl상당 염 농도(이하염도)는 $0{\sim}12\;wt%$, 균질화온도는 $181{\sim}230^{\circ}C$이다. II형은 기포의 크기가 $80{\sim}90\;vol%$ 이상을 차지하는 포유물로서 역시 낮은 공융온도($-54{\sim}-22^{\circ}C$)를 보이며, 염도는 $3{\sim}8\;wt%$, 균질화온도는 $177{\sim}304^{\circ}C$ 범위이다. III형은 액체가 풍부하고 암염(halite)을 딸결정으로 포함하는 포유물로서 균질화온도는 $230{\sim}328^{\circ}C$, 염도는 $31{\sim}40\;wt%$이다. III형은 규산염용융포유물과 연관되어 산출되며 가열실험 중에 90% 이상의 포유물이 기포가 사라진 후에 암염이 용해되는 거동을 보인다. IV형은 $CO_{2}$를 함유하면서 칼리암염(sylvite)이나 암염을 딸결정으로 포함하는 포유물물로서 전기석에 가장 풍부하게 포획되어 있다. $CO_{2}$시스템의 밀도는 $0.80{\sim}0.75\;g/cm^{3}$, 균질화 온도는 $190{\sim}317^{\circ}C$, 염도는 $2{\sim}35\;wt%$이다. 멜트(melt)에서 가장 먼저 용리된 유체로부터 형성된 유체포유물은 규산염용융포유물과 공간적으로 연관되어 산출되는 III형이며 I형에 비해 전기석의 중앙부에서 산출되는 II형이 I형보다 먼저 포획된 것으로 추측된다. 용융체에서 용리되진 유체의 염도는 용리압력과 밀접한 관련성이 있으며, 염도의 요동(fluctuation)은 페그마타이트가 형성되는 동안 압력의 요동이 있었음을 의미한다. IV형은 가장 후기에 포획된 유체포유물이며, 광산 주변에 분포하는 석회암체 등의 변성퇴적암류로부터 $CO_{2}$ 성분과 다양한 성분의 유체가 공급되어 생성된 것으로 여겨진다. 정동이 발달하고 있지 않으며, 백운모를 함유하고 있는 대유페그마타이트는 변성작용에 의한 부분용융에 의해 형성된 멜트에서 결정화되었으며, 상당히 높은 압력의 환경에서 대유페그마타이트의 결정화작용 과정에서 용리한 유체의 성분이 전기석에 포획되어 있다. 이때 용리된 유체는 다양한 성분을 지니고 있었으며, 매우 낮은 공융온도와 다양한 딸결정은 포유물 내에 NaCl, KCl 이외에 적어도 $CaCl_{2},\;MgCl_{2}$와 같은 성분을 포함하고 있음을 지시한다. 유체의 용리는 적어도 $2.7{\sim}5.3$ kbar 이상의 압력과 $230{\sim}328^{\circ}C$ 이상의 온도에서 시작되었다.

Four types of fluid inclusions are trapped within tourmaline from Daeyou pegmatite, Jangsu-Gun, Jeonllabukdo. They range $5{\sim}100\;{\mu}m$ in size and are grouped into I, II, III, and IV based on the phase behavior at the room temperature: (1) Type I inclusions are liquid-rich and NaCl equivalent salinity ranged $0{\sim}12\;wt%$, and the homogenization temperatures (Th) ranged $181{\sim}230^{\circ}C$ with eutectic temperatures (Te) $-54{\sim}-22^{\circ}C$. (2) Type II inclusions are vapor-rich and salinity ranged $3{\sim}8\;wt%$ NaCl, and Th ranged $177{\sim}304^{\circ}C$ also showing Te $-54{\sim}-29^{\circ}C$. (3) Type III inclusions contain a halite daughter mineral with $31{\sim}40\;wt%$ NaCl, Th $230{\sim}328^{\circ}C$. More than 90% of Type III homogenize by halite dissolution and are spatially associated with silicate melt inclusions. (4) Type IV inclusions are $CO_{2}$-bearing containing various daughter minerals such as sylvite and/or halite. The density of $CO_{2}$ system within the Type IV is $0.80{\sim}0.75\;g/cm^{3}$, Th $190{\sim}317^{\circ}C$, and salinity $2{\sim}35\;wt%$ NaCl. Type III fluid inclusions, considered as the earliest fluid, formed from the fluid exsolved from the crystallizing pegmatite. It is suggested that Type II fluid in the central part of tourmaline were exsolved earlier than Type I fluids in the margin indicating salinity fluctuation during the growth of tourmaline. It implies the fluctuation of the pressure since the salinity of fluid exsolved from the crystallizing melt is governed by the pressure. The last fluid was Type IV, which may be derived from the nearby limestone and metasedimentary rocks. It is suggested that Daeyou pegmatite containing muscovite without miarolitic cavities was formed by the partial melting resulted from the regional metamorphism. Subsequently, the exsolving fluids from the crystallizing melt were trapped in tourmaline at high pressure condition. The exsolved fluids contain various components such as $CaCl_{2}\;and\;MgCl_{2}$ as well as NaCl and KCl. The exsolution began at least at $2.7{\sim}5.3\;kbar\;and\;230{\sim}328^{\circ}C$ with the pressure fluctuation.

키워드

참고문헌

  1. 김대업, 이형재, 조한익, 임현철 (1989) 경남.북, 전남.북 지역 고품위 규석 광상 조사연구. 비금속 광상조사연구, KR-892B-1, 54-60
  2. 김수영, 문희수 (1994) 상동지역 페그마타이트 및 관계 화성암의 전기석 분화 특징. 자원환경지질, 27권, 441-449
  3. 대한광업진흥공사 (1989) 비금속광물특성조사보고서 (규석, 장석편). 547
  4. 대한지질학회 (1999) 한국의 지질. 802
  5. 신흥자 (1999) 대유 페그마타이트광상의 광물조성과 k-Ar연대. 자원환경지질, 32, 227-236
  6. 양경희, 장주연 (2002) 경상남도 일광의 각력파이프형 구리 (Cu)광상에서 산출되는 전기석의 지구화학. 한국암석학회지, 11, 3-4, 259-270
  7. 진명식, 김성재 (1988) 순경 함주석 페그마타이트의 K-Ar연령. 광산지질, 21, 171-174
  8. 홍승호, 윤욱 (1993) 장계도폭 지질보고서. 한국자원 연구소, 4-9
  9. Evans, A.M. (1993) Ore Geology and Industrial Minerals An Introduction(3rd Ed.). Blackwell science, 121-127
  10. Bodnar, R.J. and Sterner, S.M. (1987) Synthertic fluid inclusions: in G.C. Ulmer and H.L. Barnes, eds., Hydrothermal Experimental Techniques, Wiley-Interscience, New York., 423-457
  11. Bodnar, R.J., Sterner S.M. and Hall D.L. (1989) Salty: A Fortran program to calculate compositions of fluid inclusions in the system NaCI-KCI-$H_2O$. Computers and Geosci, 15, 19-41 https://doi.org/10.1016/0098-3004(89)90053-8
  12. Bonder, R.J. and Virk, M.O. (1994) Interpretation ofmicrothermometric data for H2O-NACI fluid inclusions. In:De Vivo, B. and Frezzotti, M.L. (eds.), Fluid Inclusions in Minerals, Methods and Application. Virginia Polytechnic Institute and Statc University, Blacksburg, 117-130
  13. Burnham, C.W. (1997) Magmas and hydrothermal fluids. In geochemistry of hydrothermal ore deposits 2rd ed. (H. L. Barnes,ed), John Wiley & Sons, 71-136
  14. Cerny, P. and Ercit. T.S. (2005) The classification of granitic pegmatite revisited. The Canadian Mineralogist, 43, 2005-2026 https://doi.org/10.2113/gscanmin.43.6.2005
  15. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. (2000) tectonic and sedimentary evolution of the Korean peninsula: a reveew and new view, Earth-Sci. Rev., 52, 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  16. Cline, J.S. and Bodnar, R.J. (1994) Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, Molybdenum deposit. Economic Geolology, 89, 1780-1802 https://doi.org/10.2113/gsecongeo.89.8.1780
  17. Darling, R.S. (1991) An extended equation to calculate NaCI contents from final clathrate melting temperatures in fluid inclusions: implications for P-T isochore location. Geochim Cosmochim Acta., 55, 3869-3871 https://doi.org/10.1016/0016-7037(91)90079-K
  18. Faure, G. and Mensing, T.M. (2005) Isotopes: Principles and applications (3rd Ed),. John Wiley & Sons, INC., 113-143
  19. Griffin, W.L., Slack, J.F., Ramsden, A.R., Win, T.T. and Ryan, C.G. (1996) Trace element in tourmaline from massive sulfide deposits and tourmalinties: Geochemical controls and exploration applications. Econ Geol, 91, 657-675 https://doi.org/10.2113/gsecongeo.91.4.657
  20. Henry, D.J. and Dutrow, B.L. (1992) Tourmaline in low grade clastic metasedimentrary rock, An example of the petrogenetic potential of tourmaline. Contributions to Mineralogy and Petrology, 112, 203-218 https://doi.org/10.1007/BF00310455
  21. Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral, An example from the staurolite-grade metapelites of NW Maine. Am Mineral, 70, 1-15
  22. Hollister, L.S. (1981) In formation intrinsically available from fluis inclusions. In Hollyster, L.S. and Crawford, M.L., eds., Short Course in Fluid Inclusions, Mineralogical Association of Canada, Calgary, 1-12
  23. Jiang, S.Y., Slack, J.F. and Shaw, D.R, (1998) Paragenesis and Chemistry of Multistage Tourmaline Formation in the Sullivan Pb - Zn - Ag Deposit, British Columbia. Econ Geol, 93, 47-67 https://doi.org/10.2113/gsecongeo.93.1.47
  24. Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1986) Tourmaline as recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Am Mineral, 71, 472-500
  25. Lee, S.G., Shimizu, H., Masuda, A. and Song, Y.S. (1992) Crustal evolution of the Precambrian basement in the korean Peninsula. Joun. Petrol. Soc. Korea, 1, 2, 124-131
  26. London, D. and Manning, D.A. (1995) Chemical variation and significance of tourmaline from southwest England, Econ Geol, 90, 495-519 https://doi.org/10.2113/gsecongeo.90.3.495
  27. Parry, W.T. and Bruhn, R.L. (1987) Fluid inclusion evidence for minimum 11km vertical offset on the Wasatch fault, Utah. Geology, 15, 67-70 https://doi.org/10.1130/0091-7613(1987)15<67:FIEFMK>2.0.CO;2
  28. Palmer, M.R. and Slack, J.F. (1989) Boron isotopic composition of tourmaline from massivesulfide deposit and tourmalinites:Contr.Mineralogy Petrology, 103, 434-451 https://doi.org/10.1007/BF01041751
  29. Roedder, E. (1984) Fluid Inclusions. Reviews on Mineralogys, 12, Mineralogical Society of America, Washington, D.C., 664
  30. Slack, J.F., Palmer, M.R., Stevens, B.P.J. and Barnes, R.G. (1993) Origin and significance of tourmaline - rich rocks in the Broken Hill district, Australia. Econ Geol, 88, 505-541 https://doi.org/10.2113/gsecongeo.88.3.505
  31. Taylor and Slack, J.F. (1984) Tourmalines from Appalachian Caledonian massive sulfide deposit:Textural, chemical, and isotopic relationship. Economic Geology, 79, 1703-1726 https://doi.org/10.2113/gsecongeo.79.7.1703
  32. Trumbell, R.b. and Chaussidon, M. (1999) Chemical and boron isotopic composition of granitepegmatite system in Swaziland. Chemical Geology, 153, 125-137 https://doi.org/10.1016/S0009-2541(98)00155-7
  33. Williamson, B.J., Spratt, J., Adams, J.T., Tindle, A.G. and Stanley, C.J. (2000) Geochemical constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization: an Example from fault breccias at Roche, SW England. Jour Petro, 4, 1439-1453
  34. Wolf, M.B. and London, D. (1997) Boron in granitic magmas:stability of tourmaline in equilibrium with biotite and cordierite. Contributions to Mineralogy and Petrology, 130, 12-30 https://doi.org/10.1007/s004100050346
  35. Yang, K. and Bodnar, R.J. (1994) Magamtitc-Hydrothermal evolution in the bottoms of porphyry copper systems: evidence from the silicate melt and aqueous fluid inclusions in the Gyeong-sang Basin, South Korea. Int. Geol. Rev., 36, 608-628 https://doi.org/10.1080/00206819409465478