Preparation of Affinity Membrane by Electrospinning Method

전기방사법에 의한 친화막 제조

  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University) ;
  • Hong, Byung-Pyo (Department of Chemical System Engineering, Keimyung University)
  • 변홍식 (계명대학교 화학시스템공학과) ;
  • 홍병표 (계명대학교 화학시스템공학과)
  • Published : 2007.03.30

Abstract

Protein affinity membranes based on polyethersulfone (PES) and bovine serum albumin (BSA) were prepared by using an electrospinning method. The changes in the size of nanofiber according to the various conditions of electrospinning (concentration of spinning solution, voltage, flow rate, tip to collector distance) were investigated, and the preparation conditions of the affinity membrane were optimized. XPS and FT-IR results showed the firm incorporation of BSA with PES. It was found PES-BSA nanofibers could be prepared at the temp. of $20{\sim}22^{\circ}C$ and humidity of $45{\sim}55%$. The size of nanofibers increased with increase of the content of PES in the spinning solution while BSA did not affect much to the size of nanofiber. It was also revealed that the narrow size distribution of nanofiber could be obtained with PES 7 wt%, BSA 0.7 wt%, HFP 92.3 wt% at the electrospinning conditions of 1 mL/hr, 10 cm TCD, and 10 kV.

Polyethersulfone (PES)와 Bovine Serum Albumin (BSA) 용액으로 전기방사법을 이용하여 단백질 친화막을 제조하였다. 방사운전조건(방사용액의 농도, 전압, 방사속도, 방사거리)을 다양하게 조절하여 나노섬유의 크기를 관찰하였으며, 최적의 친화막 제조 조건을 확인할 수 있었다. XPS와 FT-IR로써 PES와 BSA의 결합을 확인하였으며, PES-BSA 나노섬유의 최적 방사 온도와 습도는 $20{\sim}22^{\circ}C$$45{\sim}55%$임을 알 수 있었다. 또한 PES 함량이 증가할수록 섬유의 크기가 증가하고, BSA의 경우 나노섬유의 크기에 큰 영향이 없음을 알았다. PES 7 wt%, BSA 0.7 wt%. Hexafluropropanol (HFP) 92.3 wt%의 용액을 이용하여 전압 10.0 kV, 방사거리 10 cm, 방사속도 1.0 mL/hr의 조건에서 방사한 경우 균일한 크기의 PES-BSA 나노섬유가 얻어졌다.

Keywords

References

  1. H. Strathmann and K. Kock, 'The formation mechanism of phase inversion membranes', Desalination, 21(3), 241 (1997) https://doi.org/10.1016/S0011-9164(00)88244-2
  2. M. Mulder, 'Basic Principles of Membrane Technology, second edition', Kluwer Academic Publishers, Dordrecht, Netherlands (1996)
  3. N. Chanunpanich, Hongsik Byun, and Inn-Kyu Kang, 'Membrane morphology: phase inversion to electrospinning', 멤브레인, 15(2), 85 (2005)
  4. S. M. Jo, W. S. Lee, and S. W. Chun, 'Nanofiber TEchnology and Applications', Fiber TEchnology and Industry, 6, 61 (2002)
  5. A. Formhals, US Patent, 1,975,504 (1934)
  6. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, 'Potential of nanofiber matrix as tissue engineering scaffolds', Tissue Eng., 11, 101 (2005) https://doi.org/10.1089/ten.2005.11.101
  7. Z. Ma, M. Kotaki, T. Yong, W. He, and S. Ramakrishna, 'Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering', Biomaterials, 26, 2527 (2005) https://doi.org/10.1016/j.biomaterials.2004.07.026
  8. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, 'A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering', Biomaterial, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00635-X
  9. Y. K. Luu, et al., 'Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers', J. Control. Release, 89, 341 (2003) https://doi.org/10.1016/S0168-3659(03)00097-X
  10. G. Verreck, et al., 'Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer', J. Control. Release, 92, 349 (2003) https://doi.org/10.1016/S0168-3659(03)00342-0
  11. X. Wang, et al., 'Electrospun nanofibrous membranes for highly sensitive optical sensors', Nano. Lett., 11, 1273 (2002)
  12. B. Ding, J. H. Kim, Y. Miyazaki, and S. M. Shiratori, 'Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection', Sens. Actuators B Chem., 101, 373 (2004) https://doi.org/10.1016/j.snb.2004.04.008
  13. T. H. Grafe and K. M. Graham, 'Nanofiber webs from electrospinning, in Proceedings of the Fifth International Conference', Stuttgart, Germany, March (2003)
  14. M. M. Bergshoef and G. J. Vancso, 'Transparent Nanocomposites with ultrathin, electrospun nylon- 4,6 fiber reinforcement', Adv. Mater., 11, 1362 (1999) https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO;2-X
  15. X. Li, et al., 'Fabrication of sulfonated poly(ether ether ketone ketone) membranes with high proton conductivity', J. Membrne Sci., 281, 1 (2006) https://doi.org/10.1016/j.memsci.2006.06.002
  16. F. Chen, C. N Lee, and S. H Teoh, 'Nanofibrous modification on ultra-thin poly(e-caprolactone) membrane via electrospinning', Materials Science & Engineering C, in press (2006)
  17. L. Liu, Z.-M. Huang, C. L. He, and X. J. Han, 'Mechanical performance of laminated composites incorporated with nanofibrous membranes', Materials Science & Engineering A, 435-436, 309 (2006)
  18. H. Zou, Q. Luo, and D. Zhou, 'Affinity membrane chromatography for the analysis and purification of proteins', J. Biochem. Biophys. Methods, 49, 199 (2001) https://doi.org/10.1016/S0165-022X(01)00200-7
  19. M. Nakamura et al., 'Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde', J. chromatogr. A, 822, 53 (1998) https://doi.org/10.1016/S0021-9673(98)00501-9
  20. 김재훈, 나원재, 김병식, 김민, 'BSA 고정막에 의한 Tryptophan 이성질체의 분리', 멤브레인, 16(2), 133 (2006)
  21. H. Fong, I. Chun, and D. H. Reneker, 'Beaded Nanofibers Formed During Electrospinning', Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  22. J. M. Deitzel, et al., 'Electrospinning of Polymer Nanofibers with Specific Chemistry', Polymer, 43, 1025 (2002) https://doi.org/10.1016/S0032-3861(01)00594-8
  23. P. Gibson, H. Schreuder-Gibson, and D. Rivin, 'Transport Properties of Porous Membranes Based on Electrospun Nanofibers', Colloids and Surfaces A: Physicochem. Eng. Aspects, 187-188, 469 (2001)
  24. S. Tsuneda, K. Saito, T. Sugo, and K. Makuuchi, 'Protein absorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation- induced graft polymerization', Radiat. Phys. Chem., 46(2), 239 (1995) https://doi.org/10.1016/0969-806X(95)00019-T