Performance Evaluation of Soil Vapor Extraction Using Prefabricated Vertical Drain System

연직배수시스템을 이용한 토양증기추출공법의 성능 평가

  • Shin, Eun-Chul (Department of Civil & Environmental System Engineering, Univ. of Incheon) ;
  • Park, Jeong-Jun (Research Institute for Engineering and Technology, Univ. of Incheon)
  • 신은철 (인천대학교 토목환경시스템공학과) ;
  • 박정준 (인천대학교 공학기술연구소)
  • Published : 2007.10.31

Abstract

Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. The objective of the research described herein was to effectively incorporate PVDs into a SVE remediation system. The test results show that the gas permeability was evaluated for four different equivalent diameters, increasing the equivalent diameter results in a decrease in the calculated gas permeability. It was found that the porosity for the dry condition was greater than that of the wet condition and will allow flow rate for the same vacuum flow, offering a low resistance to the air flow.

토양증기추출공법(SVE)은 불포화 지반상태에서 휘발성 유기화합물(VOCs)과 유류오염 물질을 제거하는데 효과적이고 경제적인 공법중 하나이다. 그러나 토양증기추출공법은 투기계수가 1 Darcy보다 작은 실트질 흙과 같이 낮은 투기계수를 가진 지반에서는 비효율적이다. 따라서, 본 연구에서는 기존 연약지반의 지반개량시 사용된 연직배수재(PVDs)를 토양증기추출시스템에 적용하여 짧은 공기배출거리로 최대한 신속하게 오염물질을 제거할 수 있게 하여 투기계수가 낮은 지반에서 오염된 토양을 효과적으로 복원할 수 있는 토양증기추출공법을 적용하는데 목적이 있다. 실험결과, 등가직경이 증가할수록 계산된 투기계수의 값은 감소하였고, 흙시료의 조건이 건조상태일 경우가 습윤상태 보다 공기가 차지하는 비율이 더 커지게 되어 같은 진공이 주어졌을 때, 공기흐름에 대한 낮은 저항으로 흐름률이 더 높게 나타났다.

Keywords

References

  1. 신은철, 박정준, 노정민, 2005, 연직배수재를 이용한 오염토양복원 특성 평가, 2005년 한국지반공학회 봄학술발표회, 한국지반공학회, 한국시설안전기술공단, p. 1400-1407
  2. 정하익, 이용수, 우제윤, 1995, 오염지반 및 지하수 정화기술에 관한 연구, KICT/94-GE-1101-2, 한국건설기술연구원
  3. Atkinson, M.S. and Eldred, P.J.L., 1981, Consolidation of soil using vertical drains, Geotechnique, 31(1), 33-43 https://doi.org/10.1680/geot.1981.31.1.33
  4. Bowders, J.J. and Gabr, M.A., 1995, Strip-drains for in silty clean up of contaminated fine-grained soils, Geotechnical News, 13(3), 21-25
  5. Collazos, O.M., Bowders, J.J., and Bouazza, M., 2002, Enhanced soil vapor extraction using PV drains, 4th ICEG Environmental Geotechnics, Sweta & Zeitlinger, Brazil, p. 761-766
  6. Gabr, M.A., Bowders, J.J, Wang, J., and Quaranta, J.D., 1996, In situ soil flushing using prefabricated vertical drains, Canadian Geotechnical Journal, 33(1), 97-105 https://doi.org/10.1139/t96-026
  7. Gabr, M.A., Williamson, A., Sabodish, M., and Bowders, J.J., 1999, BTEX extraction from clay soil using prefabricated vertical drains, J. Geotech. & Geoenviron. Engrg., 125(3), 615-618 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(615)
  8. Hansbo, S., 1979, Consolidation of clay by band-shaped prefabricated drains, Ground Engrg., 12(5), 16-25
  9. Johnson, P.C., Stanley, C.C., Kemblowsky, D.L., Byers, D.L., and Colthart, J.D., 1990, A practical approach to the design, operating, and monitoring of in-situ soil venting systems, Ground Water Monitoring Review, 10, 159-178 https://doi.org/10.1111/j.1745-6592.1990.tb00347.x
  10. Long, R. and Covo, A., 1994, Equivalent diameter of vertical drains with an oblong cross section, J. Geotech. Engrg., 120(9), 1625-1630 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1625)
  11. Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Transactions of the American Geophysical Union 2, 519-524
  12. US EPA, 1995, How to evaluate alternative cleanup technologies for underground storage tank sites: A guide for corrective action plan reviewers, EPA/510/B-95/007, Chapter II, p. 1-29
  13. US EPA, 1997, Remediation case studies: Soil vapor extraction and other in situ technologies, EPA/542/R-97/009
  14. Welker, A.L., Logan, M., and Knight, S.B., 1998, Design issues of a prefabricated drain remediation system, Geotechnical News, 16(1), 31-35
  15. Welker, A.L., Gilbert, R.B., and Bowders, J.J., 2000, Using a reduced equivalent diameter for prefabricated vertical drain to account for smear, Geosynthetics International, 7(1), 47-57 https://doi.org/10.1680/gein.7.0165