DOI QR코드

DOI QR Code

Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: II. Micromechanics Analysis

직교 이방적 사질토의 미시역학적 탄소성 모델링: II. 미시역학적 해석

  • Published : 2007.03.31

Abstract

In the companion paper, we provided the novel elastic-plastic constitutive model based on the micromechanics theory. Herein, the elastic and elastic-plastic deformation of granular soils is meticulously analyzed. To guarantee high accuracy of the microscopic parameter, the systematic procedure to evaluate the parameters is provided. The analysis of the elastic response during the isotropic and triaxial compression shows that the stress-level dependency of cross-anisotropic elastic moduli is induced by the power relationship of the contact force in the normal contact stiffness, while the evolution of fabric anisotropy is more pronounced during triaxial compression. The micromechanical analysis indicates that the plastic strains are likely to occur at very small strains. The plastic deformation of tangential contacts has an important role in the reduction of soil stiffness during axial loading.

본 논문과 함께 제출한 논문에서는 미시역학 기반의 새로운 탄소성 모델의 정식화에 대해 설명하였다. 본 논문에서는 사질토 변형의 탄성 및 탄소성 거동을 미시역학에 근거하여 자세히 분석하였다. 모델에 필요한 변수 평가를 위한 과정을 제시하였다. 등방 및 삼축 압축 시험에서 나타난 사질토의 탄성 거동을 분석한 결과, 직교 이방 탄성계수의 응력 종속성은 미시적 수직 강성에서 나타난 수직 접촉력의 거듭제곱 함수 형태가 반영되어 나타나며, 삼축 압축 응력 상태에서는 조직 이방성의 변화가 응력 종속성에 영향을 미침을 알 수 있었다. 미시역학적 해석을 통해 소성 변형이 매우 낮은 변형률 수준에서도 발현되며, 변형 중 사질토 강성의 비선형적 감소는 접촉점에서의 접선 방향 소성 변형에 의해 나타남을 밝혔다.

Keywords

References

  1. Brace, W. F. (1963), 'Behavior of quartz during indentation', Journal of geology, 71(5), 581-595 https://doi.org/10.1086/626934
  2. Chaudhary, S. K, Kuwano, J., and Hayano, Y. (2004), 'Measurement of quasi-elastic stiffuess parameters of dense toyoura sand in hollow cylinder apparatus and triaxial apparatus with bender elements', Geotechnical Testing Journal, 27(1), 23-35
  3. Hardin, B. O., and Richart, F. E. J. (1963), 'Elastic wave velocities in granular soils', Journal of Soil Mechanics and Foundation Engineering, ASCE, 89(SMl), 33-65
  4. Johnson, K. L. (1985), Contact mechanics, Cambridge University Press, Cambridge
  5. Jung, Y.-H., Lee, J.-H., and Chung, C.-K. (2006), 'Evolution of Fabric Anisotropy in Granular Soils under Triaxial Loadings', Proc. Geocongress 2006, Atlanta, Georgia
  6. Jung, Y. H. (2004), 'Modeling of nonlinear anisotropic deformation of granular soils in pre-failure condition by numerical approach', Seoul National University, Seoul, Korea
  7. Kohata, Y., Tatsuoka, F., Wang, L., Jiang, G. L., Hoque, E., and Kodaka, T. (1997), 'Modelling the non-linear deformation properties of stiff geomaterials', Geotechnique, 47(3), 563-580 https://doi.org/10.1680/geot.1997.47.3.563
  8. Kuwano, R. (1999), 'The stiffuess and yielding anisotropy of sand', Ph.D. thesis, Imperial college, University of London, London
  9. Kuwano, R., and Jardine, R. J. (2002), 'On the applicability of cross-anisotropic elasticity to granular materials at very small strains', Geotechnique, 52(10), 727-749 https://doi.org/10.1680/geot.52.10.727.38848
  10. Yimsiri, S., and Soga, K. (2002), 'Application of micromechanics model to study anisotropy of soils at small strains', Soils and Foundations, 42(5), 15-26 https://doi.org/10.3208/sandf.42.5_15