록시스로마이신의 체내동태에 대한 이종간 예측모델

Interspecies Scaling of Roxithromycin Pharmacokinetics Across Species

  • 발행 : 2007.03.30

초록

본 연구에서는 랫트, 토끼, 닭, 개 등의 각종 동물들의 약물동태학적 파라미터를 이용하여 록시스로마이신의 이종간 예측모델을 수립하였으며, 이때 약물동태학적 파라미터는 반감기, 청소율, 분포용적, 평균체류시간 등을 이용하였다. 이종간 약물동태학적 파라미터의 변화 예측은 체중과 지수적 상관관계 $(Y=aW^b)$를 이용하였으며, 이때 Y는 약물동태학적 파라미터, W는 체중, a는 allometric coefficient를 의미한다. B는 약물동태학적 파라미터와 체중간의 상관관계를 의미하는 비례상수이다. 랫트, 토끼, 닭, 개 등의 약물동태학적 파라미터인 분포용적, 청소율, 반감기, 평균체류시간 등은 체중과 유의한 선형관계를 나타내었다. 본 연구에 의해 수립된 록시스로마이신에 대한 이종간 약물동태학적 파라미터의 이종간 예측모델은 다양한 종의 동물종에 대한 좀 더 정확한 용법용량을 구하는 기초자료로 이용할 수 있을 것이다.

The purpose of this study was to examine the allometric analysis of roxithromycin using pharmacokinetic data. The pharmacokinetic parameters used were $half-life(t_{1/2})$, mean residence time (MRT), clearance (Cl) and volume of distribution at steady state $(V_{ss})$. Relationships between body weight and the pharmacokinetic parameter were based on the empirical formula $Y=aW^b$, where 'Y' is $t_{1/2}$, MRT, Cl, or $V_{ss}$, W the body weight and 'a' is an allometric coefficient (intercept) that is constant for a given drug. The exponential term, 'b', is a proportionality constant that describes the relationship between the pharmacokinetic parameter of interest and body weight. As results of the allometric analyses, the logarithms of $t_{1/2}$, MRT, Cl, and $V_{ss}$ were linearly related to the logarithms of body weight. Results of the current analyses could provide information on appropriate doses of roxithromycin for all species.

키워드

참고문헌

  1. Baggot JD. Principles of Drug Disposition in Domestic Animals. Philadelphia: W.B. Saunders 1977
  2. Boxenbaum H. 1982, Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm, 1982; 10: 201-227 https://doi.org/10.1007/BF01062336
  3. Boxenbaum H and D'Souza RW. Interspecies pharmacokinetic scaling, biological design and neoteny. Adv Drug Res 1990; 19: 139-196
  4. Bryskier AJ, Butzler JP, Neu HC and Tulkens PM. 1993. Macrolides: chemistry, pharmacology and clinical uses. Paris: Arnette Blackwell 1993
  5. Calder WA. Size, Function and Life History. Cambridge: Harvard University Press 1984
  6. Cox SK, Cottrell MB, Smith L, Papich MG, Frazier DL and Bartges J. Allometric analysis of ciprofloxacin and enrofloxacin pharmacokinetics across species. J Vet Pharmacol Therap 2004: 27; 139-146 https://doi.org/10.1111/j.1365-2885.2004.00560.x
  7. Craigmill AL and Cortright KA. Interspecies Considerations in the Evaluation of Human Food Safety for Veterinary Drugs. AAPS PharmSci 2002: 4; E34 https://doi.org/10.1208/ps040207
  8. Dedrick RL. Animal scale-up. J Pharmacokineti Biopharm 1973: 1; 435-461 https://doi.org/10.1007/BF01059667
  9. Duthu GS. Interspecies correlation of the pharmacokinetics of erythromycin, oleandomycin and tylosin. J Pharm Sci 1985: 74; 943-946 https://doi.org/10.1002/jps.2600740907
  10. Lassman HB, Puri SK, Ho I, Sabo Rand Mezzino MJ. Pharmacokinetics of roxithromycin (RU 28965). J Clin Pharmacol 1988: 28; 141-152 https://doi.org/10.1002/j.1552-4604.1988.tb05738.x
  11. Lim JH, Jang BS, Lee RK, Park SC and Yun, HI. Determination of roxithromycin residues in the flounder muscle with electrospray liquid chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 2000: 746;219-225 https://doi.org/10.1016/S0378-4347(00)00334-0
  12. Lim JH, Park BK, Kim MS, Hwang YH, Yun HY. Pharmacomkinetics of roxithromycin after intravenous administration in broilers. J Vet Clin 2006; 23: 87-90
  13. Lim JH, Park BK, Yun HY. PK/PD modeling of roxithromycin for inhibitory effect of tumor necrosis factoralpha production in dogs. J Vet Med A 2006; 54: 394-398
  14. Markham A and Faulds D. Roxithromycin. An update of its antimicrobial activity, pharmacokinetic properties and therapeutic use. Drugs 1994: 48; 297-326 https://doi.org/10.2165/00003495-199448020-00011
  15. Nilsen OG, Aamo T, Zahlsen K and Svarva P. Macrolide pharmacokinetics and dose scheduling of roxithromycin. Diagn Microbiol Infect Dis 1992: 15; 71S-76S https://doi.org/10.1016/0732-8893(92)90130-L
  16. Noli C and Boother D. Macrolides and lincosamides, Vet Dermatol 1999: 10; 217-223 https://doi.org/10.1046/j.1365-3164.1999.00176.x
  17. Padoin C. Tod M. Perret G. and Petitjean O. Analysis of the pharmacokinetic interaction between chephalexin and quinapril by a nonlinear mixed-effect model. Antimicrob. Agents Chemother 1998: 42; 1463-1469
  18. Papich MG and Riviere JE. Chloramphenicol and derivatives, macrolides, limcosamides and miscellaneous antimicrobials. In: Veterinary Pharmacology and Therapeutics 8th ed. Ames, Iowa State University Press 2001: 820-854
  19. Riviere JE, Martin-Jimenez T, Sundlof SF and Craigmill AL. Interspecies allometric analysis of the comparative pharmacokinetics of 44 drugs across veterinary and laboratory animal species. J vet Pharmacol Therap 1997: 20; 453-463 https://doi.org/10.1046/j.1365-2885.1997.00095.x
  20. Wise R, Kirkpatrick B, Ashby J and Andrews JM. Pharmacokinetics and tissue penetration of roxithromycin after multiple dosing. Antimicrob Agents Chemother 1987: 31; 1051-1053 https://doi.org/10.1128/AAC.31.7.1051