Interspecies Scaling of Roxithromycin Pharmacokinetics Across Species

록시스로마이신의 체내동태에 대한 이종간 예측모델

  • Published : 2007.03.30

Abstract

The purpose of this study was to examine the allometric analysis of roxithromycin using pharmacokinetic data. The pharmacokinetic parameters used were $half-life(t_{1/2})$, mean residence time (MRT), clearance (Cl) and volume of distribution at steady state $(V_{ss})$. Relationships between body weight and the pharmacokinetic parameter were based on the empirical formula $Y=aW^b$, where 'Y' is $t_{1/2}$, MRT, Cl, or $V_{ss}$, W the body weight and 'a' is an allometric coefficient (intercept) that is constant for a given drug. The exponential term, 'b', is a proportionality constant that describes the relationship between the pharmacokinetic parameter of interest and body weight. As results of the allometric analyses, the logarithms of $t_{1/2}$, MRT, Cl, and $V_{ss}$ were linearly related to the logarithms of body weight. Results of the current analyses could provide information on appropriate doses of roxithromycin for all species.

본 연구에서는 랫트, 토끼, 닭, 개 등의 각종 동물들의 약물동태학적 파라미터를 이용하여 록시스로마이신의 이종간 예측모델을 수립하였으며, 이때 약물동태학적 파라미터는 반감기, 청소율, 분포용적, 평균체류시간 등을 이용하였다. 이종간 약물동태학적 파라미터의 변화 예측은 체중과 지수적 상관관계 $(Y=aW^b)$를 이용하였으며, 이때 Y는 약물동태학적 파라미터, W는 체중, a는 allometric coefficient를 의미한다. B는 약물동태학적 파라미터와 체중간의 상관관계를 의미하는 비례상수이다. 랫트, 토끼, 닭, 개 등의 약물동태학적 파라미터인 분포용적, 청소율, 반감기, 평균체류시간 등은 체중과 유의한 선형관계를 나타내었다. 본 연구에 의해 수립된 록시스로마이신에 대한 이종간 약물동태학적 파라미터의 이종간 예측모델은 다양한 종의 동물종에 대한 좀 더 정확한 용법용량을 구하는 기초자료로 이용할 수 있을 것이다.

Keywords

References

  1. Baggot JD. Principles of Drug Disposition in Domestic Animals. Philadelphia: W.B. Saunders 1977
  2. Boxenbaum H. 1982, Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm, 1982; 10: 201-227 https://doi.org/10.1007/BF01062336
  3. Boxenbaum H and D'Souza RW. Interspecies pharmacokinetic scaling, biological design and neoteny. Adv Drug Res 1990; 19: 139-196
  4. Bryskier AJ, Butzler JP, Neu HC and Tulkens PM. 1993. Macrolides: chemistry, pharmacology and clinical uses. Paris: Arnette Blackwell 1993
  5. Calder WA. Size, Function and Life History. Cambridge: Harvard University Press 1984
  6. Cox SK, Cottrell MB, Smith L, Papich MG, Frazier DL and Bartges J. Allometric analysis of ciprofloxacin and enrofloxacin pharmacokinetics across species. J Vet Pharmacol Therap 2004: 27; 139-146 https://doi.org/10.1111/j.1365-2885.2004.00560.x
  7. Craigmill AL and Cortright KA. Interspecies Considerations in the Evaluation of Human Food Safety for Veterinary Drugs. AAPS PharmSci 2002: 4; E34 https://doi.org/10.1208/ps040207
  8. Dedrick RL. Animal scale-up. J Pharmacokineti Biopharm 1973: 1; 435-461 https://doi.org/10.1007/BF01059667
  9. Duthu GS. Interspecies correlation of the pharmacokinetics of erythromycin, oleandomycin and tylosin. J Pharm Sci 1985: 74; 943-946 https://doi.org/10.1002/jps.2600740907
  10. Lassman HB, Puri SK, Ho I, Sabo Rand Mezzino MJ. Pharmacokinetics of roxithromycin (RU 28965). J Clin Pharmacol 1988: 28; 141-152 https://doi.org/10.1002/j.1552-4604.1988.tb05738.x
  11. Lim JH, Jang BS, Lee RK, Park SC and Yun, HI. Determination of roxithromycin residues in the flounder muscle with electrospray liquid chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 2000: 746;219-225 https://doi.org/10.1016/S0378-4347(00)00334-0
  12. Lim JH, Park BK, Kim MS, Hwang YH, Yun HY. Pharmacomkinetics of roxithromycin after intravenous administration in broilers. J Vet Clin 2006; 23: 87-90
  13. Lim JH, Park BK, Yun HY. PK/PD modeling of roxithromycin for inhibitory effect of tumor necrosis factoralpha production in dogs. J Vet Med A 2006; 54: 394-398
  14. Markham A and Faulds D. Roxithromycin. An update of its antimicrobial activity, pharmacokinetic properties and therapeutic use. Drugs 1994: 48; 297-326 https://doi.org/10.2165/00003495-199448020-00011
  15. Nilsen OG, Aamo T, Zahlsen K and Svarva P. Macrolide pharmacokinetics and dose scheduling of roxithromycin. Diagn Microbiol Infect Dis 1992: 15; 71S-76S https://doi.org/10.1016/0732-8893(92)90130-L
  16. Noli C and Boother D. Macrolides and lincosamides, Vet Dermatol 1999: 10; 217-223 https://doi.org/10.1046/j.1365-3164.1999.00176.x
  17. Padoin C. Tod M. Perret G. and Petitjean O. Analysis of the pharmacokinetic interaction between chephalexin and quinapril by a nonlinear mixed-effect model. Antimicrob. Agents Chemother 1998: 42; 1463-1469
  18. Papich MG and Riviere JE. Chloramphenicol and derivatives, macrolides, limcosamides and miscellaneous antimicrobials. In: Veterinary Pharmacology and Therapeutics 8th ed. Ames, Iowa State University Press 2001: 820-854
  19. Riviere JE, Martin-Jimenez T, Sundlof SF and Craigmill AL. Interspecies allometric analysis of the comparative pharmacokinetics of 44 drugs across veterinary and laboratory animal species. J vet Pharmacol Therap 1997: 20; 453-463 https://doi.org/10.1046/j.1365-2885.1997.00095.x
  20. Wise R, Kirkpatrick B, Ashby J and Andrews JM. Pharmacokinetics and tissue penetration of roxithromycin after multiple dosing. Antimicrob Agents Chemother 1987: 31; 1051-1053 https://doi.org/10.1128/AAC.31.7.1051