BAYESIAN MODEL AVERAGING FOR HETEROGENEOUS FRAILTY

  • Chang, Il-Sung (Johnson and Johnson Pharmaceutical Research and Development) ;
  • Lim, Jo-Han (Department of Applied Statistics, Yonsei University)
  • Published : 2007.03.31

Abstract

Frailty estimates from the proportional hazards frailty model often lead us to conjecture the heterogeneity in frailty such that the variance of the frailty varies over different covariate groups (e.g. male group versus female group). For such systematic heterogeneity in frailty, we consider a regression model for the variance components in the proportional hazards frailty model, denoted by the MLFM. However, in many cases, the observed data do not show any statistically significant preference between the homogeneous frailty model and the heterogeneous frailty model. In this paper, we propose a Bayesian model averaging procedure with the reversible jump Markov chain Monte Carlo which selects the appropriate model automatically. The resulting regression coefficient estimate ignores the model uncertainty from the frailty distribution in view of Bayesian model averaging (Hoeting et al., 1999). Finally, the proposed model and the estimation procedure are illustrated through the analysis of the kidney infection data in McGilchrist and Aisbett (1991) and a simulation study is implemented.

Keywords

References

  1. ARJAS, E. AND GASBARRA, D. (1994). 'Nonparametric Bayesian inference from right censored survival data using the Gibbs sampler', Statistica Sinica, 4, 505-524
  2. ASLANIDOU, H., DEY, D. K. AND SINHA, D. (1998). 'Bayesian analysis of multivariate survival data using Monte Carlo methods', The Canadian Journal of Statistics, 26, 3848
  3. CLAYTON, D. G. (1991). 'A Monte Carlo method for Bayesian inference in frailty models', Biometrics, 47, 467-485 https://doi.org/10.2307/2532139
  4. DIGGLE, P. J. (1988). 'An approach to the analysis of repeated measurements', Biometrics, 44, 959-971 https://doi.org/10.2307/2531727
  5. GELMAN, A. (2004). 'Prior distributions for variance parameters in hierarchical models', unpublished
  6. GLIDDEN, D. V. (1999). 'Checking the adequacy of the gamma frailty model for multivariate failure times', Biometrika, 86, 381-393 https://doi.org/10.1093/biomet/86.2.381
  7. GREEN, P. J. (1995). 'Reversible jump Markov chain Monte Carlo computation and Bayesian model determination', Biometrika, 82, 711-732 https://doi.org/10.1093/biomet/82.4.711
  8. HEAGERTY, P. J. AND ZEGER, S. L. (2000). 'Marginalized multilevel models and likelihood inference', Statistical Science, 15, 1-26
  9. HOETING, J. A., MADIGAN, D., RAFTERY, A. E. AND VOLINSKY, C. T. (1999). 'Bayesian model averaging: a tutorial', Statistical Science, 14, 382-417 https://doi.org/10.1214/ss/1009212519
  10. LANCASTER, T. (1992). The Econometric Analysis of Transition Data, Cambridge University Press
  11. MAPLES, J. J., MURPHY, S. A. AND AXINN, W. G. (2002). 'Two-level proportional hazards models', Biometrics, 58, 754-763 https://doi.org/10.1111/j.0006-341X.2002.00754.x
  12. MCCULLAGH, P. AND NELDER, J. A. (1989). Generalized Linear Models, 2nd ed., Chapman & Hall/CRC
  13. MCGILCHRIST, C. A. AND AISBETT, C. W. (1991). 'Regression with frailty in survival analysis', Biometrics, 47, 461-466 https://doi.org/10.2307/2532138
  14. MCGILCHRIST, C. A. (1993). 'REML estimation for survival models in frailty', Biometrics, 49, 221-225 https://doi.org/10.2307/2532615
  15. NOH, M., HA, I. D. AND LEE, Y. (2006). 'Dispersion frailty models and HGLMs', Statistics in Medicine, 25, 1341-1354 https://doi.org/10.1002/sim.2284
  16. RAVISHANKER, N. AND DEY, D. K.(2000). 'Modeling multivariate survival models with a mixture of positive stable frailties', Methodology and Computing in Applied Probability, 2, 293-308 https://doi.org/10.1023/A:1010033329399
  17. RICHARDSON, S. AND GREEN, P. J. (1997). 'On Bayesian analysis of mixtures with an unknown number of components', Journal of the Royal Statistical Society, Ser. B, 59, 731-792 https://doi.org/10.1111/1467-9868.00095
  18. SAHU, S. K. AND DEY, D. K. (2004). 'On multivariate survival models with a skewed frailty and a correlated baseline hazard process', Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality (Genton, M. G., eds), Chapman & Hall/CRC, 321-338
  19. SAHU, S. K., DEY, D. K., ASLANIDOU, H. AND SINHA, D. (1997). 'A Weibull regression model with gamma frailties for multivariate survival data', Lifetime Data Analysis, 3, 123-137 https://doi.org/10.1023/A:1009605117713
  20. SHIH, J. H. AND LOUIS, T. A. (1995). 'Inferences on the association parameter in copula models for bivariate survival data', Biometrics, 51, 1384-139 https://doi.org/10.2307/2533269
  21. QIOU, Z., RAVISH ANKER, N. AND DEY, D. K. (1999). 'Multivariate survival analysis with positive stable frailties', Biometrics, 55, 637-644 https://doi.org/10.1111/j.0006-341X.1999.00637.x
  22. WALKER, S. G. AND MALLICK, B. K. (1997). 'Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing', Journal of the Royal Statistical Society, Ser. B, 59, 845-860 https://doi.org/10.1111/1467-9868.00101
  23. YAU, K. K. W. AND MCGILCHRIST, C. A. (1998). 'ML and REML estimation in survival analysis with time dependent correlated frailty', Statistics in Medicine, 17, 1201 - 1213 https://doi.org/10.1002/(SICI)1097-0258(19980615)17:11<1201::AID-SIM845>3.0.CO;2-7
  24. YAU, K. K. W. (2001). 'Multilevel models for survival analysis with random effects', Biometrics, 57, 96-102 https://doi.org/10.1111/j.0006-341X.2001.00096.x
  25. VUE, H. AND CHAN, K. S. (1997). 'A dynamic frailty model for multivariate survival data', Biometrics, 53, 785-793 https://doi.org/10.2307/2533542
  26. ZHANG, W. AND STEEL, F. (2004). 'A semiparametric multilevel survival model', Journal of the Royal Statistical Society, Ser. C, 53, 387-404 https://doi.org/10.1111/j.1467-9876.2003.05056.x