DOI QR코드

DOI QR Code

Microbial and Physiochemical Characteristics of Pork Loin Cuts Treated with Ozone Gas During Storage

오존가스 처리가 저장기간 중 포장 돈육의 미생물학적, 이화학적 특성에 미치는 영향

  • Jeong, Jin-Young (Animal Product Grading Service) ;
  • Kim, Chang-Ryoul (Department of Food Science and Nutrition, Seokang College) ;
  • Kim, Kwang-Hyun (Division of Animal Science, Institute of Agriculture Science and Technology, Chonnam National University) ;
  • Moon, Seung-Ju (Division of Animal Science, Institute of Agriculture Science and Technology, Chonnam National University) ;
  • Kook, Kil (Division of Animal Science, Institute of Agriculture Science and Technology, Chonnam National University) ;
  • Kang, Suk-Nam (Research Center of Bioactive Materials, Chonbuk National University)
  • 정진형 (축산물 등급판정소) ;
  • 김창렬 (서강정보대학 식품영양학과) ;
  • 김광현 (전남대학교 농생명과학대학 동물자원학과) ;
  • 문승주 (전남대학교 농생명과학대학 동물자원학과) ;
  • 국길 (전남대학교 농생명과학대학 동물자원학과) ;
  • 강석남 (전북대학교 생리활성물질연구소)
  • Published : 2007.03.31

Abstract

This experiment was conducted to investigate the changes of pork meat quality characteristics exposed to ozone gas for 5, 10, and 15 min and then vacuum packaged during storage for 0, 5, 10, 15, and 20 day at $4^{\circ}C$. The ozone gas exposed groups of pork loin cuts (OZM) had slightly higher pH value compared to the control at day 0 and 5 (p<0.01). The 15 min exposure of ozone gas groups showed significantly (p<0.01) higher TBARS value than that of control at the day 15 and 20. However, there was no significant difference in all groups at day 0,5, and 10. The CIE $L^*$ and $b^*$ values of OZM showed no significant difference between control and ozone gas treated groups during storage. The loin cut color of ozone gas exposure for 15 min had significantly lower CIE $a^*$ values than the other groups at day 0,5, and 15 (p<0.01). The aerobic plate count and coliform bacteria count of pork loin cuts exposed ozone gas significantly (p<0.01) was reduced at day 0 by about $0.45-1.04\;log_{10}CFU/g$ and $0.26-0.30\;log_{10}CFU/g$, respectively. As ozone gas exposure time extended, the aerobic plate count and coliform bacteria count of OZM were increased at day 0, 5, and 10 (p<0.01). However, there were no significant differences observed among groups at day 20 in the counts of aerobic and coliform bacteria. In conclusion, the meat cuts exposed to ozone gas for 5 and 10 min before packing may be a reasonable packing method regarding the effects of ozone level on meat oxidation, color change and microbial reduction.

본 실험은 식육의 미생물 억제 및 저장성을 향상하기 위하여, 기존의 침수나 살포방법이 아닌, 오존 가스에 노출하는 방식으로 돈육을 5, 10, 15분간 오존 가스에 노출시켜 진공포장이후 $4^{\circ}C$에서 0, 5, 10 그리고 20일간 저장하였으며, 이때 식육의 이화학적인 특성 변화 및 미생물변화를 관찰하였다. 오존 처리 후 저장 0 및 5일차에 처리군의 pH 값이 대조구보다 다소 높게 나타났다(p<0.01). 지방산패도(TBARS)의 경우 오존에 15분간 노출시킨 처리구의 경우 15 및 20일차에 대조구보다 유의적으로 높은 값을 나타내었다(p<0.01). 하지만 0, 5, 그리고 10일차에는 TBARS 간에 유의적인 차이가 나타나지 않았다. 육색의 백색도 및 황색도는 시험구간내 유의적인 차이가 없었다. 하지만, 적색도의 경우 15분간 오존 가스에 노출한 돈육이 0, 5 그리고 15일에 다른 처리구보다 높은 적색도를 나타내었다(p<0.01). 저장 0일차에 처리구 전체의 총균수 및 대장균군 수(각각 0.45-1.04와 $0.26-0.30\;log_{10}CFU/g$)가 대조구보다 유의적으로 낮게 나타났다(p<0.01). 오존처리 시간이 증가할수록 0, 5, 10일차에 총균수 및 대장균군 수가 증가하였으나, 저장 20일차에는 총균수 및 대장균군수의 유의적인 차이는 발견되지 않았다. 이상의 결과에서 부분육의 포장시, 포화 오존가스에 5분 및 10분간 노출시킨 후 포장하는 것이 식육의 산화, 육색의 변화, 그리고 항미생물 효과를 감안했을 때 합리적인 방법이라고 사료된다.

Keywords

References

  1. Bosilevac, J. M., Nou, X., Osborn, M. S. and Allen, D. M., and Koohmaraie, M. (2005) Development and evaluation of an on-line hide decontamination procedure for use in a commercial beef processing plant. J. Food Protect. 68,265-272 https://doi.org/10.4315/0362-028X-68.2.265
  2. Bryant, E. A., Fulton, G. P., and Budd, G. L. (1992) Disinfection alternatives for safe drinking water, Van Nostrand Reinhold, New York
  3. Castillo, A., McKenzie, &. S., Lucia, L. M., and Acuff, G. R. (2003) Ozone treatment for reduction of Escherichia coli O157:H7 and Salmonella serotype typhimurium on beef carcass surfaces. J. Food Protection 66, 775-779 https://doi.org/10.4315/0362-028X-66.5.775
  4. Clark, D. S., Olson, J. C., and Roberts, T. A. (eds). (1980) Microbial ecology of foods. Academic Press, New York, Vol. 1,pp.189-192
  5. Connell, J. J. (1995) Control of Mussel Quality. 4th ed., Fishing News Books Ltd., Furnham, Surrey, UK, Vol. 157, pp. 159-160
  6. Dave, S. A. (1999) Effect of ozone against Salmonella enteritidis in aqueous suspensions and on poultry meat. MS thesis, Ohio State Univ., Columbus, OH, USA. pp. 26-68
  7. Deymer, D. I. and Vandekerckhove, P. (1979) Compounds determining pH in dry sausage. Meat Sci. 3,161-167 https://doi.org/10.1016/0309-1740(79)90033-0
  8. Dondo, A., Nachman, C., Doglione, L., Rosso, A., and Genetti, A. (1992) Foods their preservation by combined use of refrigeration and ozone. Ing. Aliment. Conserve Anim. 8, 1625
  9. Dwankanath, C. I., Rayner, E. T., Mann, G. E., and Dollar, F. G. (1968) Reduction of aflatoxin levels in cotton seed and peanut meals by ozonization. J. Am. Oil. Chem. Soc. 45, 9397
  10. Emswiler, B. S., Kotula, A. W., and Rough, D. K. (1976) Bactericidal effectiveness of three chlorine sources used in beef carcass washing. J. Animal Sci. 42, 1445- 1450
  11. Fabrizio, K. A., Sharma, R. R., Demirci, A., and Cutter, C. N. (2002) Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella species on poultry. Poult Sci. 81, 1598-605 https://doi.org/10.1093/ps/81.10.1598
  12. Foumaud, J. and Lauret, R. (1972) Influence of ozone on the surface microbial flora of frozen boot and during thawing. Ind. Aliment. Agric. 89, 585-589
  13. Gammon, R. and Karelak, A. (1973) Gaseous sterilization of foods. Amer. Inst. Chem. Eng. Symp. Series 69,91-102
  14. Goche and Cox, B. (1999) Ozone treatment of fresh H&G Alaska salmon. Report to Alaska Science and Technology Foundation and Alaska Department of Environmental Conservation, November, Seattle, Washington Surefish
  15. Gorman, B. M., Kuchevar, S. L., Sofos, L. W., Morgan, J. B., Schmidt, G. R., and Smith, G. C. (1997) Changes on beefadipose tissue following decontamination with chemical solutions or water $35^{\circ}C\;or\;74^{\circ}C$. J. Muscle Foods 8, 185-197 https://doi.org/10.1111/j.1745-4573.1997.tb00627.x
  16. Gurol, M. D. and Vatistas, R. (1986) Oxidation of phenolic compounds by ozon and Ozon/UV radiation. A Comorative study. Wat. Res. 21, 895-895 https://doi.org/10.1016/S0043-1354(87)80006-4
  17. Han, Y., Floros, J. D., Linton, R. H., Nielsen, S. S., and Nelson, P. E. (2002) Response surface modeling for the inactivation of E. coli O157 H7 on green peppers by ozone gas treatment. J. Food Sci. 67,3188-3 193
  18. Haraguchi, T., Simidu, U., and Aiso, K. (1969) Preserving effect of ozone on fish. Bull. Jpn. Soc. Sci. Mussel 35, 915-919 https://doi.org/10.2331/suisan.35.915
  19. ICMSF (International Commission on Microbiological Specifications for Foods) (1986) Microorganisms in Foods. Sampling for Microbiological Analysis: Principles and Scientific Applications. Vol. 2, 2nd ed., University of Toronto Press, Toronto, pp. 18 1-196
  20. Johnson, M. G., Titus, T. C., McCaskill, L. H., and Acton, J. C. (1979) Bacterial counts on surfaces of carcasses and in ground beef from carcasses sprayed or not sprayed with hypochlorous acid. J. Food Sci. 44, 169-173 https://doi.org/10.1111/j.1365-2621.1979.tb10033.x
  21. Kaess, G. and Weidemann, J. F. (1968) Ozone treatment of chilled beef. Effect oflow concentrations of ozone on microbial spoilage and surface color of beef. J. Food Technol. 3, 325-334 https://doi.org/10.1111/j.1365-2621.1968.tb01473.x
  22. Khadre, M. A., Yousef, A. E., and Kim, J. O. (2001) Microbiological aspects of ozone applications in food a review. J Food Sci. 6, 1242-1252
  23. Kim, J. B., Yousef, A. E., and Dave, S. (1999) Application of ozone for enhancing the microbiological safety and quality of foods a review. J Food Protection 62, 1071-1087 https://doi.org/10.4315/0362-028X-62.9.1071
  24. Lee, M., Sebranek, J. O., Olson, D. O., and Dickson, J. S. (1996) Irradiation and packaging of fresh meat and poultry. J. Food Protection 59, 62-72 https://doi.org/10.4315/0362-028X-59.1.62
  25. Lowenadler, J. and Ronner, U., (1994). Determination of dissolved carbon dioxide by coulometric titration in modified atmosphere systems. Lett. Appl. Microbiol. 18, 285-288 https://doi.org/10.1111/j.1472-765X.1994.tb00870.x
  26. Luck, E. and Jager, M. (1998) Antimicrobial Food Additives. 2nd ed., Springer-Verlag, New York, pp. 42
  27. Lyons-Magnus, (1999) Ozone Use Survey Data. Ozone Treatment of Fresh Strawberries. Data submitted to EPRI Agriculture and Food Alliance, September 28,1999, Lyons-Magnus. Fresno, CA, USA
  28. Manousaridis, O., Nerantzaki, A., Paleologos, E. K., Tsiotsias, A., Savvaidis, I. N. and Kontominas, M. G. (2005) Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiol, 22, 1-9 https://doi.org/10.1016/j.fm.2004.06.003
  29. Melo, T. S., Blumer, T. N., Swaisgood, M. E., and R. J. Monroe. (1974) Catheptic enzyme activity in aged country-style ground porks as influenced by precuring treatment. J. Food Sci. 39,511-515 https://doi.org/10.1111/j.1365-2621.1974.tb02936.x
  30. Nottingham, P. M. (1982) Microbiology of carcass meats. In: Meat Microbiology, Brown, M. H. (ed), Applied Science Pub., London, pp. 13-65
  31. Pohlman, F. W., Stivarius, M. R., McElyea, K. S., Johnson, Z. B., and Johnson. M. G. (2002) The effects of ozone, chlorine dioxide, cetylpyridinium chloride and trisodium phosphate as multiple antimicrobial interventions on microbiological, instrumental color, and sensory color and odor characteristics of ground beef. Meat Sci. 61,307-313 https://doi.org/10.1016/S0309-1740(01)00198-X
  32. Reagan, J. O., Acuff, O. R., Buege, D. R., Buyck, M. R., Dickson, J. S., Kastner, C. L., Morgan, J., Nickelson, L., II, R., Smith, O. C., and Sofos, J. N. (1996) Trimming and washing of beef carcasses as a method of improving the microbiological quality of meat. J. Food Protect. 59,751-756 https://doi.org/10.4315/0362-028X-59.7.751
  33. Restaino, L., Frampton, E., Hemphill, J., and Palnikar, P. (1995) Efficacy of ozonated water against various food related microorganisms, Appl. Environ. Microbiol. 61,3471-3475
  34. Rice, R. O., Overbeck, P., and Larson, K. A. (2000) Costs of ozone in small drinking water systems. In: Proceedings on Small Drinking Water and Wastewater Systems. NSF International, Ann Arbor, MI, pp. 27
  35. SAS (2000) SAS/STAT User's Guide. Version 6.02, SAS Institute Inc., Cary, NC, USA
  36. Sharma, R. R., Demirci, A., Beuchat, L. R., and Fett, W. F. (2002) Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with ozonated water and heat treatment. J Food Protect. 65,447-451 https://doi.org/10.4315/0362-028X-65.3.447
  37. Sheldon, B. W. and Brown, A. L. (1986) Efficacy of ozone as a disinfectant for poultry carcasses and chilled water. J. Food Sci. 51,305-309 https://doi.org/10.1111/j.1365-2621.1986.tb11116.x
  38. Singha, N., Singh, R. K., and Bhuniab, A. K. (2003) Sequential disinfection of E. coli O157:H7 inoculated alfa seeds before and during sprouting using aqueous chloride dioxide, ozonated water and thyme essential oil, Lebensm. Wiss. Tech. 36,235-243 https://doi.org/10.1016/S0023-6438(02)00224-4
  39. Stivarius, M. R., Pohlman, F. W., McElyea, K. S., and Apple, J. K. (2002) Microbial, instrumental color and sensory color and odor characteristics of ground beef produced from beef trimmings treated with ozone or chlorine dioxide. Meat Sci. 60, 295-298 https://doi.org/10.1016/S0309-1740(01)00137-1
  40. Stover, E. L. and Jamis, R. W.(1981) Obtaining high level wastewater disinfection with ozone. J. Water Pollut. Control Fed. 53, 1637-1647
  41. Terlouw, C. (2005) Stress reactions at slaughter and meat quality in pigs: genetic background and prior experience: A brief review of recent findings. Livestock Production Science 94, 125-135 https://doi.org/10.1016/j.livprodsci.2004.11.032
  42. Witte, V. C., Krause, G. F., and Bailey, M. E. (1970) A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 35, 582-582 https://doi.org/10.1111/j.1365-2621.1970.tb04815.x

Cited by

  1. Effect of combination of ozonation and vacuum packaging on shelf life extension of fresh chicken legs during storage under refrigeration vol.213, 2017, https://doi.org/10.1016/j.jfoodeng.2017.06.026
  2. Intervention Technologies for Ensuring Microbiological Safety of Meat: Current and Future Trends vol.11, pp.2, 2012, https://doi.org/10.1111/j.1541-4337.2011.00177.x
  3. Photohydroionization Reduces Shiga Toxin-Producing Escherichia coli and Salmonella on Fresh Beef with Minimal Effects on Meat Quality vol.3, pp.1, 2007, https://doi.org/10.22175/mmb2018.11.0036
  4. A Novel Aqueous Ozone Treatment as a Spray Chill Intervention against Escherichia coli O157:H7 on Surfaces of Fresh Beef vol.82, pp.11, 2007, https://doi.org/10.4315/0362-028x.jfp-19-093
  5. Evaluation of UVC Radiation and a UVC-Ozone Combination as Fresh Beef Interventions against Shiga Toxin-Producing Escherichia coli, Salmonella, and Listeria monocytogenes and Their Effects on Beef Qua vol.83, pp.9, 2007, https://doi.org/10.4315/jfp-19-473