Fabrication of Polyaniline Nanoparticles Using Microemulsion Polymerization

  • Jang, Jyong-Sik (Hyperstructured Organic Materials Research Center, School of Chemical and Biological Engineering, Seoul National University) ;
  • Ha, Jung-Seok (Hyperstructured Organic Materials Research Center, School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Sun-Hee (Hyperstructured Organic Materials Research Center, School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2007.03.31

Abstract

Polyaniline (PANI) nanospheres, 4 run in diameter, were fabricated by the microemulsion polymerization of octyltrimethyl ammonium bromide (OTAB). The size of the PANI nanoparticles could be controlled as functions of the surfactant concentration, surfactant spacer length and polymerization temperature. The diameter of the PANI nanospheres decreased with increasing surfactant concentration and decreasing temperature. The PANI nanoparticles revealed enhanced conductivity compared to conventional bulk PANIs. In addition, the PANI nanoparticles could be applied as optically transparent conducting materials due to their high conductivity and the nanosize effect. With 9 wt% PANI in the PC matrix, the PANI/PC film exhibited a conductivity of $8.9\times10^{-3}S/cm$ and transparency exceeding 95% over the entire visible light range.

Keywords

References

  1. J. Jang, Adv. Polym. Sci., 199, 189 (2006) https://doi.org/10.1007/12_075
  2. J. Keum, C. S. Ha, and Y. Kim, Macromol. Res., 14, 401 (2006) https://doi.org/10.1007/BF03219101
  3. Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, Science, 269, 1086 (1995)
  4. U. Asawapirom, F. Bulut, T. Farrell, C. Gadermaier, S. Gamerith, R. Guntner, T. Kietzke, S. Patil, T. Piok, R. Montenegro, B. Stiller, B. Tiersch, K. Landfester, E. J. W. List, D. Neher, C. S. Torres, and U. Scherf, Macromol. Symp., 212, 83 (2004)
  5. D. Chaudhuri, A. Kumar, I. Rudra, and D. D. Sarma, Adv. Mater., 13, 1548 (2001)
  6. X. Zhang, W. J. Goux, and S. K. Manohar, J. Am. Chem. Soc., 126, 4502 (2004) https://doi.org/10.1021/ja037954k
  7. J. Y. Kwon, E. Y. Kim, and H. D. Kim, Macromol. Res., 12, 303 (2004)
  8. P. Manisankar, C. Vedhi, and G. Selvanathan, J. Polym. Sci. A, 43, 1702 (2005)
  9. H. Qiu and M. Wan, J. Polym. Sci. A, 39, 3485 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<1::AID-POLA10>3.0.CO;2-B
  10. H. Xia and Q. Wang, J. Appl. Polym. Sci., 87, 1811 (2003) https://doi.org/10.1002/app.11656
  11. D. Chattopadhyay, M. Chakraborty, and B. M. Mandal, Polym. Int., 50, 538 (2001) https://doi.org/10.1002/1097-0126(200101)50:1<1::AID-PI652>3.0.CO;2-9
  12. M. Wan and J. Li, J. Polym. Sci. A, 37, 4605 (1999)
  13. J. Stejskal, P. Kratochvil, and M. Helmstedt, Langmuir, 12, 3389 (1996)
  14. P. S. Rao, S. Subrahmanya, and D. N. Sathyanarayana, Synth. Met., 9201, 1 (2002)
  15. J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, J. Am. Chem. Soc., 125, 314 (2003)
  16. Z. Zhang, Z. Wei, and M. Wan, Macromolecules, 35, 5937 (2002) https://doi.org/10.1021/ma011278u
  17. G. M. Do Nascimento, P. Corio, R. W. Novickis, M. L. A. Temperini, and M. S. Dresselhaus, J. Polym. Sci. A, 43, 815 (2005)
  18. M. V. Kulkarni, A. K. Viswanath, R. Marimuthu,and T. Seth, J. Polym. Sci. A, 42, 2043 (2004)
  19. M. Wan and J. Li, J. Polm. Sci. A, 38, 2359 (2000)
  20. S. H. Lee, J. W. Yoon, and M. H. Suh, Macromol. Res., 10, 282 (2002) https://doi.org/10.1007/BF03218282
  21. J. Li, K. Fang, H. Qiu, S. Li, W. Mao, and Q. Wu, Synth. Met., 145, 191 (2004) https://doi.org/10.1016/j.synthmet.2004.05.014
  22. J. Jang, J. H. Oh, and G. D. Stucky, Angew. Chem. Int. Ed., 41, 4016 (2002)
  23. J. Jang and K. Lee, Chem. Commun., 1098 (2002)
  24. F. Yan and G. Xue, J. Mater. Chem., 9, 3035 (1999)
  25. X. J. Xu, L. M. Gan, K. S. Siow, and M. K. Wong, J. Appl. Polym. Sci., 91, 1360 (2004)
  26. J. Jang and J. H. Oh, Adv. Mater., 16, 1650 (2004)
  27. J. Jang and J. H. Oh, Adv.Funct. Mater., 15, 494 (2005) https://doi.org/10.1002/adfm.200590000
  28. S. Zhou, F. Yeh, C. Burger, and B. Chu, J. Phys. Chem. B, 103, 2107 (1999) https://doi.org/10.1021/jp9845219
  29. H. J. Reiss, Colloid Interface Sci., 53, 61 (1975)
  30. J. Stejskal, A. Riede, D. Hlavata, J. Prokes, M. Helmstedt, and P. Holler, Synth. Met., 96, 55 (1998) https://doi.org/10.1016/S0379-6779(98)00064-2
  31. G. Boara and M. Sparpaglione, Synth. Met., 72, 135 (1995) https://doi.org/10.1016/0379-6779(94)02337-X
  32. N. Kuramoto and A. Tomita, Polymer, 38, 3055 (1997)
  33. J. Lei, Z. Cai, and C. R. Martin, Synth. Met., 46, 53 (1992)
  34. J. Duchet, R. Legras, and S. Demoustier-Champagne, Synth. Met., 98, 113 (1998) https://doi.org/10.1016/S0379-6779(98)00180-5
  35. W. Luzny and E. Banka, Macromoleculars, 33, 425 (2000)