Image Enhancement Using Adaptive Weighted Sigma Filter

적응비중화 시그마필터에 의한 영상향상

  • Hwang, Jae-Ho (Dept. of Electronic Engineering, Hanbat National University)
  • 황재호 (한밭대학교 전자공학과)
  • Published : 2007.03.25

Abstract

In the sigma filter, there is a specialized neighbours distribution scheme in which the sigma value is computed from local statistics. It is designed to modify a standard average filter to preserve edges. However this filter is vulnerable to details-enhancement and conventional sigma approaches have been focused on denoising, not enhancing the characteristic area. This paper proposes an adaptive image enhancement algorithm using local statistics and functional synthesis which are utilized for adaptive realization of the enhancement, so that not only image noise may be smoothed but also details may be enhanced. For the local adaptation, parameters are estimated and weighted at each moving window that satisfy the criteria. The experimental results illuminates the effectiveness of the proposed method.

시그마필터는 특성화된 근접분포구도로 시그마 값을 국부통계값들로부터 산출한다. 표준평균필터를 교정하여 잡음을 제거하는 동시에 에지를 보존하도록 설계되어 있으나 미세부분 향상에는 취약하다. 종래의 시그마 접근들도 잡음제거에 치중되어 있었을 뿐 특징구역의 향상은 소홀하였다. 본 논문은 국부통계값들과 함수 부합을 활용한 적응영상향상 알고리즘을 제안한다, 이들 값들은 영상향상의 적응 실현에 유용하여 잡음을 평활시키고 영상의 미세부분을 향상한다. 국부적응처리를 위하여 매 이동창에서 평가척도를 만족하는 파라미터가 추정되고 비중화된다. 그리고 실험 결과는 제안된 방식의 효능을 보여준다.

Keywords

References

  1. A. Buades, B. Coll and J. M. Morel, 'The staircasing effect in neighborhood filters and its solution,' IEEE Trans. Image Processing, Vol. 15, no. 6, pp. 1499-1505, June 2006 https://doi.org/10.1109/TIP.2006.871137
  2. D. Barash, 'A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation' IEEE Trans. Pattern Anal. and Machine Intell., Vol. 24, no. 6, pp. 844-867, Jun. 2002 https://doi.org/10.1109/TPAMI.2002.1008390
  3. J. S. Lee, 'Digital image smoothing and the sigma filter,' Computer Vision, Graphics and Image Processing, Vol. 24, no.2 pp. 255-269, Nov. 1983 https://doi.org/10.1016/0734-189X(83)90047-6
  4. S. H. Jung and N. C. Kim, 'Adaptive image restoration of sigma filter using local statistics and human visual characteristics,' Electronics Letters, Vol. 24, no. 4, pp. 201-202, Feb. 1988 https://doi.org/10.1049/el:19880134
  5. C. Daniel and F. S. Wood, Fitting Equations to Data, John Wiley & Sons, New York, 1980
  6. X. Z. Sun and A. N. Venetsanopoulos, 'Adaptive schemes for noise filtering and edge detection by use of local statistics,' IEEE Trans. Circuits and Systems, Vol. 35, no. 1, pp. 57-69, Jan. 1988 https://doi.org/10.1109/31.1700
  7. T. Loupas, W. N. Mcdicken, and P. L. Allan, 'An adaptive weighted median filter for speckle suppression in medical ultrasonic images,' IEEE Trans. Circuits and Systems, Vol. 36, no. 1, pp. 129-135, Jan. 1989 https://doi.org/10.1109/31.16577
  8. N. Halyo, Z. Rahman, and S. K. Park, 'Information content in nonlinear local normalization processing of digital images,' Proc. SPIE Vol. 4388, pp. 129-142, Aug. 2001
  9. P. Perona and J. Malik. 'Scale space and edge detection using anisotropic diffusion.' IEEE Workshop on Computer Vision, pp. 16-22, 1987