Influence of Electrochemical Oxidation Potential on Biofilm Structure and Bacterial Dissimilation in Wastewater Treatment Bioreactor

오수처리 반응기에서 생물막 매개체에 부과한 전기화학적 산화전위가 생물막의 구조와 미생물의 대사에 미치는 영향

  • Na, Byung-Kwan (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • 나병관 (서경대학교 생물공학과) ;
  • 박두현 (서경대학교 생물공학과)
  • Published : 2007.03.28

Abstract

Biofilm media was equipped in two-compartmented wastewater treatment bioreactor which was separated by porcelain septum. DC 2.0 volt of electric potential was charged to anodic (oxidative) biofilm media (ABM) to induce oxidation potential but not to that of carbon (neutral) biofilm media (CBM) that was used for control test. Biofilm structure, biomass variation, Off variation and wastewater treatment efficiency in the bioreactor equipped with ABM (ABM-bioreactor) and CBM (CBM-bioreactor). Time-coursed variation of biofilm structure forming on surface of ABM and CBM was observed by scanning electron microscopy. The biofilm growing on ABM was dispersed on surface and was not completely covered the media but the biofilm growing on CBM was continuously increased and finally covered the media. The ORP of CBM was decreased to 100 mV, which was reciprocally proportional to the biomass growth. However, the ORP of ABM was about 800 mV, which was maintained during operation for about 60 days. The treatment efficiency of COD in the ABM bioreactor was 2 times higher than those in the CBM bioreactor. From these results, we proposed that electrochemical oxidation potential charged to biofilm media may inhibit formation of biofilm extremely condensed and activate bacterial cell metabolism.

생물막 매개체를 도자기 격막으로 구획된 오수처리 반응기에 장착하고 직류 2volt의 전압을 부과하여 생물막 매개체가 산화 전위를 유지할 수 있게 유도하였다. 반면 대조실험을 위해 사용한 반응조의 생물막 매개체에는 전압을 부과하지 않았다 ABM-반응기와 CBM-반응기에서 배양시간에 따른 생물막의 구조, 생물량의 변화, 오수처리 효율 등을 측정하여 상호 차이를 비교하였다. 전자현미경으로 관찰한 ABM의 생물막은 CBM의 생물막에 비해 분산성이 크고 미생물이 과밀하게 성장하지 않았으나 CBM의 생물막은 배양 시간에 비례하여 지속적으로 성장하면서 생물막 매개체를 완전히 덮어 과밀 생물막을 형성하였다. ABM의 ORP는 CBM의 ORP 100 mV에 비해 매우 큰 차이를 보이는 800 mV를 유지하였으며, 반응액의 ORP 또한 ABM과 CBM의 영향을 받아 각각 550 mV와 400 mV를 유지하였다. ABM-반응기에서 오수처리 효율은 CBM-반응기에서 오수처리 효율의 약 2배 정도의 차이를 나타내었다. 이러한 결과로부터 생물막 매개체에 부과한 양전위의 전기 에너지는 생물막을 구성하는 미생물 과밀현상을 억제하고 매개체의 ORP를 높게 유지함으로서 미생물의 대사 활성을 촉진하고 결과적으로 오수내 함유된 유기물의 산화효율을 증가시키는 작용이 있는 것으로 확인되었다.

Keywords

References

  1. Arnold, E.G., L.S. Clesceri, and AD. Eaton (ed.). 1992. Standard methods for the examination of water and wastewater 18th edition, pp5-9. Published by American Public Health Association, NW Washington, DC20005
  2. Bouwer, E.J. 1987. Theoretical investigation of particle deposition in biofilm systems. Water Res. 21: 1489-1498 https://doi.org/10.1016/0043-1354(87)90132-1
  3. Caubet, R., F. Pedarros-Caubet, M. Chu, E. Freye, M. de Belem Rodrigue, J.M. Moreau, and W.J. Ellison. 2004. A radio frequency electric current enhance antibiotic efficacy against bacterial biofilm. Antimicrob. Agents Chemother. 48: 4662-4664 https://doi.org/10.1128/AAC.48.12.4662-4664.2004
  4. Consterton, J.W., Z. Lewandowski, D. Amar, R. Heim, O. Ehlinger, and Y. Lesty. 1991. Biofilm detachment mechanisms in a liquid-fluidized bed. Biotechnol. Bioeng. 38: 499-506 https://doi.org/10.1002/bit.260380508
  5. Costerton, J.W., A. Lewandowski, D. DeBeer, D.E. Caldwell, D.R. Korber, and G. James. 1994. Biofilms, the customized micro niche. J. Bacteriol. 176: 2137-2142 https://doi.org/10.1128/jb.176.8.2137-2142.1994
  6. Costerton, J.W. and P.S. Stewart. 2001. Battling biofilms. Sci. Am. 285: 74-81
  7. Dalton, H.M., L.K. Poulsen, P. Halasz, M.I. Angles, A.E. Goodman, and K.C. Marshell. 1994. Substratum-induced morphological changes in marine bacterium and their relevance to biofilm structure. J. Bacteriol. 176: 6900-6906 https://doi.org/10.1128/jb.176.22.6900-6906.1994
  8. Eisenmann, H., I.Letsious, A. Feuchtinger, W. Beisker, E. Mannweiler, P. Hutzler and P. Arnz. 2001. Interception of small particles by flocculent structures, sessile ciliates, and the basic layer of a wastewater biofilm. Appl. Environ. Microbiol. 67: 4286-4292 https://doi.org/10.1128/AEM.67.9.4286-4292.2001
  9. James. G.A., D.R. Korber, D.F. Caldwell, and J.W. Costetton. 1995. Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J. Bacteriol. 177: 907-915 https://doi.org/10.1128/jb.177.4.907-915.1995
  10. Kuhl, M. and B.B. Jorgensen. 1992. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 58: 1164-1174
  11. Larsen, T.E. and P. Harremoes, 1994. Degradation mechanisms of colloidal organic matter in biofilm reactors. Water Res. 28: 1443-1452 https://doi.org/10.1016/0043-1354(94)90312-3
  12. Lawrence, F.R., D.R. Korber, B.D. Hoyle, J.W. Costerton, and D.E. Caldwell. 1991. Optical sectioning of microbial biofilm. J. Bacteriol. 173: 6558-6567 https://doi.org/10.1128/jb.173.20.6558-6567.1991
  13. Lee, Y.N., J.H. Lee, H.J. Cho, E.J. Shin, J.W. Park, and J.H. Park. 1999. Characterization for Campylobacter newly isolated from swine gastric mucosa. J. Microbiol. Biotechnol. 9: 778-783
  14. Martin, R.F., E.J. Bouwer and L.M. Hanna. 1992. Application of clean-bed filtration theory to bacterial deposition in porous media. Environ. Sci. Technol. 26: 1053-1058 https://doi.org/10.1021/es00029a028
  15. Moat, A.G., J.W Foster, and M.P. Spector. 2002. Microbial physiology. 4th edition. pp 371-382. Wileyllis. John Wiley and Sons, Inc. New York
  16. Moller, S., A.R. Pederson, L.K. Poulsen, E. Arvin, and S Molin. 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multi species biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62: 4632-4640
  17. Na, B.K., B.I. Sang, D.W. Park and D.H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
  18. Okabe, S., T. Itoh, H. Satoh, and Y. Watanabe. 1999. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 65: 5107-5116
  19. Park, D.H. and J.G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
  20. Stewart, P.S., W. Wattanakaroon, L. Goodrum, S. M. Fortun and B.R. McLeod. 1999. Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofilm. Antimicrob. Agent Chemother. 43: 292-296
  21. Stoodley, P., D. deBeer, and H.M. Lappin-Scott. 1977. Influence of electric fields and pH on biofilm structures as rselated to the bioelectric effect. Antimicrob. Agent Chemother. 41: 1876-1879
  22. van der Borden, A.J., H. van der Werf, H.C. van der Mei, and H.J. Busscher. 2004. Electric current-induced detachment of Staphylococcus epidermidis biofilm from surgical stainless steel. Appl. Environ. Microbiol. 70: 6871-6874 https://doi.org/10.1128/AEM.70.11.6871-6874.2004
  23. Weliman, N., S.M. Fortun, and B.R. McLeod. 1996. Bacterial biofilms and the bioelectric effect. Antimicrob. Agent Chemother. 40: 2012-2014
  24. Xu, K.D., P.S. Stewart, F.Xia, C.T. Huang, and G.A. Mcfeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64: 4035-4039