• Title/Summary/Keyword: biofilm media

Search Result 126, Processing Time 0.019 seconds

Microscope Examination of Attached Biofilm under Anaerobic Conditions (혐기성 조건에서 담체에 부착된 미생물의 관찰)

  • 박성열;김도한;나영수;박영식;송승구
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.100-105
    • /
    • 2001
  • Microstructural examinations were performed on the anaerobic biofilm from reactor filled with PE support media. Optical microscope, SEM and fluorescent microscope were used for qualitative and morphological studies on the attached microorganism under anaerobic condition. Microorganisms were attached in crevices where protection from shear forces of surfaces where easy to contact with support media surface. A hypothesis for biofilm accumulation occurs on a surface such as polymer support media is presented schematically : 1st step ; cell-support media attachment, 2nd step ; cell-support media attachment and cell-cell attachment, 3rd step ; attached biofilm from neighboring crevices joins together and growing, 4th step ; mature and irregualar biofilm was formed. In SEM photographs, shape and structures of biofilm were observed, but microorganism species and methanogens were not identified. A large number of methanogenic bacteria were identified on the surface of PE substratum by fluorescence under 480nm of radiation and it was estimated that methanogenic bacteria was related to initial attachment of bacteria under anaerobic condition.

  • PDF

Nitrogen and Phosphorous Removal from Wastewater by SBBR(Sequencing Batch Biofilm Reactor) System (연속회분식 생물막 반응기를 이용한 폐수중의 질소.인 제거)

  • 김조웅;이정복;최대건;임윤택;김두현;황재웅;이용희;반용병
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.638-643
    • /
    • 1998
  • An investigation was made to develop new biofilm medium which could be applied to the Sequencing Batch Biofilm Reactor(SBBR) system for enhanced nutrient removal. 21 kinds of polyurethane media were tested fro adhesion ability for nitrifying bacteria. Nitrification rates were also tested by introducing synthetic wastewater containing ammonium-nitrogen to reactors with biofilm media. It was found that Z96-06 medium had higher selective adhension ability for nitrifying bacteria than the other biofilm media. The nitrification rate was 2.21 mg {{{{ { NH}`_{4 } ^{ +} }}}}-N /L$.$h$.$g MLSS when we operated the SBBR system containing Z96-06. Nitrification rate of the SBBR system increased approximately by 30% compared with that of the Sequencing Batch Reactor(SBR) system which did not contain biological carrier.

  • PDF

The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구)

  • 신승훈;김민수;박동일;안재동;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

Influence of Electrochemical Oxidation Potential on Biofilm Structure and Bacterial Dissimilation in Wastewater Treatment Bioreactor (오수처리 반응기에서 생물막 매개체에 부과한 전기화학적 산화전위가 생물막의 구조와 미생물의 대사에 미치는 영향)

  • Na, Byung-Kwan;Park, Doo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • Biofilm media was equipped in two-compartmented wastewater treatment bioreactor which was separated by porcelain septum. DC 2.0 volt of electric potential was charged to anodic (oxidative) biofilm media (ABM) to induce oxidation potential but not to that of carbon (neutral) biofilm media (CBM) that was used for control test. Biofilm structure, biomass variation, Off variation and wastewater treatment efficiency in the bioreactor equipped with ABM (ABM-bioreactor) and CBM (CBM-bioreactor). Time-coursed variation of biofilm structure forming on surface of ABM and CBM was observed by scanning electron microscopy. The biofilm growing on ABM was dispersed on surface and was not completely covered the media but the biofilm growing on CBM was continuously increased and finally covered the media. The ORP of CBM was decreased to 100 mV, which was reciprocally proportional to the biomass growth. However, the ORP of ABM was about 800 mV, which was maintained during operation for about 60 days. The treatment efficiency of COD in the ABM bioreactor was 2 times higher than those in the CBM bioreactor. From these results, we proposed that electrochemical oxidation potential charged to biofilm media may inhibit formation of biofilm extremely condensed and activate bacterial cell metabolism.

A Study of Substrate Removal in Wastewater Flow Variations by Submerged Biofilm Reactor (浸漬型 生物膜反應槽에 의한 負荷變動에서의 基質除去에 관한 연구)

  • Nam, Chul-Hyun;Park, Jong-Woong
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 1987
  • The objective of this study is to review the basic theories related substrate removal in wastewater flow variations using submerged biofilm reactor. An aerated biofilm reactor is that in which influent organic substrates are aerobically oxidized by the microorganisms of biofilm grown on the surface of submerged media. No sludge is returned, and oxygen is supplied by diffusers. Three types of aerated biofilm reactor are one stage-central aeration, one stageup flow aeration and two stage-side aeration. The orders of substrate removal capacity in wastewater flow variations showed two stage-side aeration, one stage-upflow aeration and one stage-central aeration. The phenonmenon of nonclosing volid in upflow aeration type was superior to these in central-side aeration type. Attached biofilm masses in case of upflow, side and central aeration reactor were 1.0mg/cm$^2$, 4.1 mg/cm$^2$ and 0.93 mg/cm$^2$, respectively. Yield coefficient for biofilm was 0.31 to 0.48. Especially, removal efficiency can be increased remarkably according to the number of biofilm reactor and the packed condition of media.

  • PDF

The Submerged Biofilm Process using Oyster-Shell Media for Wastewater Treatment and Prediction (굴패각을 담체로 사용한 침적고정 생물막공법 및 예측)

  • 문병현;이택순
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.671-678
    • /
    • 1997
  • This study was conducted to use oyster shell as media for biological wastewater treatment. The comparison between the removal efficiencies of the activated sludge and the submerged biofilm process with oyster shell media (5% of reactor volume) for domestic sewage treatment was made. The contaminant removal efficiencies of the submerged process were higher than that of the activated sludge process. And the removal efficiencies of the submerged biofilm process with oyster shell media of 10% and 18% were Investigated at various loading rate. The removal efficiencies of 10% were higher than that of the 18% during the experimental period. The effluent concentration from the sub- merged bloom process using oyster shell media was prediceted by the Stover-Kincannon model.

  • PDF

A Study on a Fixed Bed Biofilm Process Using Porous Glass Media (다공성(多孔性) 유리메디아를 이용한 고정상(固定床) 생물막법(生物膜法)에 관한 연구(硏究))

  • Yoon, Tae Il;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.112-120
    • /
    • 1996
  • In this study, the porous glass media was utilized as biomass carrier, and the optimum characteristics of this new media in fixed bed biofilm process were investigated. The characteristics of media considered here are a void volume fraction, a specific surface area, and surface characteristics of media. The effect of surface roughness and material could be clearly demonstrated by the fact that the porous glass media showed a good potential for biofilm development. This might results from the fact that biofilm is initially formed in the surface cavities of the media is protect from the shear effect. Therefore, the microcolonies are not readily detached by the fluid shear. In the steady state, biofilm formation along the packing bed depth was different from media to media. The specific area was also an important factor for the attachment of microorganism on the media surface. The specific area was also an important factor for the attachment of microorganism on the media surface. In the case of porous glass media, about $100m^2/m^3$ was enough to obtain a good organic removal efficiency The organic removal efficiency could be improved by increasing the void volume fraction in the reactor, at least 80% was required to obtain a high removal efficiency and prevent clogging. From the analysis of kinetics study, the yield coefficient, Y, was 0.42 mgMLSS/mgSBOD, endogenous respiration coefficient, ke, was $0.12day^{-1}$ and substrate removel coefficient of Mckinney. km, was $16.8hr^{-1}$ for the porous glass media G-2

  • PDF

Difference of Microorganisms Found in an Aerated submerged Biofilm Reactor with Different Plastic Media Terating Phenol Wastewater (페놀폐수를 처리하는 침적형 생물막 반응기에서 매질에 따른 미생물상의 차이)

  • 정재춘;차병훈
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.492-498
    • /
    • 1995
  • Net type polyvinylidene chloride (PVDC) media and cillium type polyethlene polypropylene (PEPP) media were installed in the aereted submerged biofilm reactors. Synthetic phenol wastewater for feed were made to contain 1,480 mg of phenol per liter of water. The organic loading range of reactors were 0.439-0.456 kg COD/m$_{3}$, 0.882 - 0.919 kg COD/m$_{3}$ and 1.199-1.339 kg COD/m$_{3}$. Comparing PVDC to PEPP media, the bacterial number found in biofilm on PEPP were slightly higher. With the low temperature (10$\circ$C), the number of bacteria was some what deceered. Number of bacterial strains identified from PVDC were 23 and those from PEPP were 42. Genera identified in the PVDC media were Flavobacterium (47.8%), Unidentified (17.6%), Pseudomonas (13.0%), Micrococcus (8.7%) and Beggratoa (8.7%). Genera identified in the PEPP media reactor were Pseudomonas (35.7%), Alcaligenes (19.0%), Aeromonas (14.33%) and Micrococcus (11.9%), In the steady, state, a filamentous bacteria, type 1701 was identified in all of the reactors. Paramecium sp. and fungi were present in the PVDC media reactor. While, Difflugia sp, Paramecium sp. and fungi were found in the PEPP media reactor. The low diversity of protozoa was ascribed to high concentration of phenol.

  • PDF

광합성세균에 의한 미생물막의 형성

  • Oh, Kwang-Keun;Lee, Cheol-Woo;Jeon, Yeong-Joong;Lee, Jae-Heung
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.733-737
    • /
    • 1996
  • The formation of microbial films(biofilm) by a non-sulfur phototrophic bacteria, Rhodopseudomonas capsulata, on inorganic media was studied. Porous ceramic beads(PCB) were superior to other immobilizing media for the biofilm formation in a packed-bed reactor. It was found that the formation of microbial films favored a lower hydraulic retention time, showing a higher ratio of cells attatched to the media to those suspended in the solution. The cell concentration in the biofilm reactor was as high as 11,400mg/l, which is 8-folds of the cell concentration in an ordinary suspended treatment. It was observed that the formation of micribial film by R. capsulata followed a general serial process of cell attachment, microcolony formation, and biofilm formation. The microbial films thus formed was very stable even for an extremely high volumetric BOD loading rate of 15gBOD/l day. The scanning electron micrographs of the microbial films showed that the cells were attached to both the surface and pores of the media.

  • PDF

Safety Investigation of Tap Water and Biofilm by Isolated Bacteria (수돗물과 생물막의 세균분포를 통한 안전성 조사)

  • Lee, Dong-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.207-213
    • /
    • 2004
  • For investigation of the food safety and influence of biofilm on the bacterial quality of tap water, it was detected by selective media, and identified by API kit and MIDI system. Biofilm and effluent showed much more colonies than influent. Although there were many presumptive positive colonies, no pathogenic bacterium detected. However opportunistic pathogens, such as Pseudomonas aeruginosa and Aeromonas species, and members of family Enterobacteriaceae were detected. Compared to influent, biofilm and effluent showed more diverse bacteria. This study implies that there would be the negative influence of biofilm on the bacterial qualities of tap water.