Growth and r-Linolenic Acid Production of Arthrospira (Spirulina) platensis in Heterotrophic Culture.

Arthrospira (Spirulina) platensis의 종속영양배양과 r-Linolenic Acid 생산

  • Choi, Gang-Guk (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Myoung-Sook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Je-Seop (Biotechnology Laboratory, R&D Center, Daesang Corporation) ;
  • Park, Bok-Jun (Biotechnology Laboratory, R&D Center, Daesang Corporation) ;
  • Ahn, Chi-Yong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2007.03.28

Abstract

Arthrospira (Spirulina) platensis is one of the commercially important filamentous cyanobacteria. The heterotrophic cultivation of Arthrospira can be an alternative strategy for commercial mass production. In heterotrophic culture, the specific growth rate of A. platensis M9108, a glucose-resistant mutant of A. platensis PCC 9108, was $0.014h^{-1}$ which was 1.8 higher than that oi the previous report. The mutant possessed the facility to assimilate and to metabolize glucose efficiently under heterotrophic condition. However, the r-linolenic acid content of 6 Arthrospira strains was not increased in heterotrophic culture. Four Arthrospira strains out of 6 tested strains were able to utilize maltose as a carbon source under heterotrophic condition. The biomass production of these strains on maltose was similar to that on glucose. The specific growth rate of A. platensis M9108 increased with glucose concentration up to 5.0 g/L and then decreased at a glucose concentration of 10.0 g/L. Additionally, A. platensis M9108 under heterotrophic condition showed no aggregation during the cultivation in contrast to A. platensis PCC 9108.

Arthrospira에 대한 종속영양배양 결과, A. platensis M9108(A. platensis PCC 9108의 고농도 glucose 내성 돌연변이)은 glucose 5.0 g/L 첨가된 SOT 배지에서 8일 동안 배양하여 0.54 g/L의 생물량을 얻었으며, 일일생산량은 0.068 g/L/day을 보였고, specific growth $rate(\mu)$는 0.014/h를 보였다. A. platensis M9108의 일일생산량과 $\mu$는 모균주인 A. platensis PCC 9108에 비하여 각각 1.3배와 1.2배 향상된 결과를 보였으며, 이전에 보고된 결과에 비하여 각각 1.3배와 1.8배 증가하였다. Arthrospira의 건체량 중 지방산과 r-linolenic acid의 함량은 각각 $1.94\sim4.97%$$0.13\sim1.33%$로 균주에 따라 상당히 다양하였다. Arthrospira는 유기탄소원으로 glucose를 첨가한 조건에서 성장이 가장 좋았으며, A. platensis M9108의 경우 maltose의 이용능도 glucose 이용 능과 비슷하였다. A. platensis M9108의 성장은 glucose의 5.0 g/L까지는 증가하였지만, 10.0 g/L에서는 저해되는 양상을 보였다. 또한 고농도의 탄소원을 이용한 종속영양배양 중 발생하는 세포의 뭉침 현상이 A. platensis M9108에서는 관찰되지 않아 안정적으로 고농도 생산에 유용할 것으로 판단된다.

Keywords

References

  1. Becker, E. W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge UK: Cambridge University Press
  2. Bligh, E. Q and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917 https://doi.org/10.1139/o59-099
  3. Borowitzka, M. A. 1994. Products from algae, pp. 5-15. In Phang, S. M., Y. K. Lee, M. A. Borowitzka, and B. A. Whitton (eds.), Algal Biotechnology in Asia-Pacific Region. University of Malaya, Kuala Lumpur, Malaysia
  4. Chen, F. and Y. Zhang. 1996. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20: 221-224 https://doi.org/10.1016/S0141-0229(96)00116-0
  5. Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578
  6. Cohen, Z. 1997. The chemicals of Spirulina, pp. 205-212. In Vonshak, A. (ed.), Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology. Taylor & Francis Ltd., London, UK
  7. Grinstea, G. S., S. S. Tokach, R. D. Goodband, and J. L. Nelssen. 2000. Effects of Spirulina platensis on growth performance of weanling pigs. Anim. Feed Sci. Technol. 83: 237-247 https://doi.org/10.1016/S0377-8401(99)00130-3
  8. Henrikson, R. 1999. Earth Food Spirulina: How this remarkable blue-green algae can transform your health and our planet, 5th ed, on line (http://www.spirulinasource.com/index.html)
  9. Joo, D. S., M. G. Cho, R. Buchholz, and E. H. Lee. 1998. Growth and fatty acid composition with growth conditions for Spirulina platensis. J. Korean Fish. Soc. 31: 409-416
  10. Kaji, T., Y. Fujiwara, Y. Inomata, C. Hamada, C. Yamamoto, S. Shimada, J. B. Lee, and T. Hayashi. 2002. Repair of wounded mono layers of cultured bovine aortic endothelial cells is inhibited by calcium spirulan, a novel sulfated polysaccharide isolated from Spirulina platensis. Life Sci. 70: 1841-1848 https://doi.org/10.1016/S0024-3205(01)01555-7
  11. Kay, R. A. 1991. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30: 555-573 https://doi.org/10.1080/10408399109527556
  12. Kim, H. S., C.-H. Kim, J.-H. Kim, M.-C. Kwon, J.-H. Cho, H.-G. Gwak, B.-Y. Hwang, J.-C. Kim, and H.-G. Lee. 2006. Comparison of anticancer activities from the culture and extraction conditions of the Spirulina platensis. Kor. J. Microbiol. Biotech. 34: 143-149
  13. Lepage, G. and C. C. Roy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396
  14. Marquez, F. J., N. Nishio, S. Nagai, and K. Sasaki. 1995. Enhancement of biomass and pigment production during growth of Spirulina platens is in mixotrophic culture. J. Chem. Tech. Biotechnol. 62: 159-164 https://doi.org/10.1002/jctb.280620208
  15. Marquez, F. J., K. Sasaki, T. Kakizono, N. Nishio, and S. Nagai. 1993. Growth characteristics of Spirulina platens is in mixotrophic and heterotrophic conditions. J. Ferment. Bioeng. 76: 408-410 https://doi.org/10.1016/0922-338X(93)90034-6
  16. Muhling, M., A. Belay, and B. A. Whitton. 2005. Screening Arthrospira (Spirulina) strains for heterotrophy. J. Appl. Phycol. 17: 129-135 https://doi.org/10.1007/s10811-005-7214-8
  17. Nandeesha, M. C., B. Gangadhara, J. K. Manissery, and L. V. Venkataraman. 2001. Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis. Bioresour. Technol. 80: 117-120 https://doi.org/10.1016/S0960-8524(01)00085-2
  18. Ogawa, T. and S. Aiba. 1981. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioeng. 23: 1121-1132 https://doi.org/10.1002/bit.260230519
  19. Ogawa, T. and G. Terui. 1970. Studies on the growth of Spirulina platensis: I. On the pure culture of Spirulina platensis. J. Ferment. Tecnol. 48: 361-367
  20. Piorreck, M., K. H. Baasch, and P. Pohl. 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23: 207-216 https://doi.org/10.1016/S0031-9422(00)80304-0
  21. Sung, K. D.,J. H. Ann, J. Y. Lee, S. J. Ohh, and H. Y. Lee. 1995. Kinetics of cultivating photosynthetic microalga, Spirulina platensis in an outdoor photobioreactor. Korean J. Biotechnol. Bioeng. 10: 401-405
  22. Tomaselli, L., E. Pelosi, and C. Paoletti. 1978. Composition of organic materials in Spirulina platensis and S. maxima. In Proceedings of the 18th Congress National Italian Society Microbiology, Fiuggi Terme, Italy
  23. Xu, N., X. Zhang, X. Fan, L. Han, and C. Zeng. 2001. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J. Appl. Phycol. 13: 463-469 https://doi.org/10.1023/A:1012537219198
  24. Yang, H. N., E. H. Lee, and H. M. Kim. 1997. Spirulina platensis inhibits anaphylactic reaction. Life Sci. 61: 1237-1244 https://doi.org/10.1016/S0024-3205(97)00668-1