면역억제제 Tautomycetin을 생산하는 방선균의 고체배지 pH에 따른 항진균 활성

Solid Medium pH-Dependent Antifungal Activity of Streptomyces sp. Producing an Immunosuppressant, Tautomycetin

  • 허윤아 (인하대학교 생물공학과) ;
  • 최시선 (인하대학교 생물공학과) ;
  • 장용근 (한국과학기술원 생명화학공학과) ;
  • 홍순광 (명지대학교 생명과학정보학부) ;
  • 김응수 (인하대학교 생물공학과)
  • Hur, Yoon-Ah (Department of Biological Engineering, Inha University) ;
  • Choi, Si-Sun (Department of Biological Engineering, Inha University) ;
  • Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Soon-Kwang (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Kim, Eung-Soo (Department of Biological Engineering, Inha University)
  • 발행 : 2007.03.28

초록

Tautomycetin(TMC)은 국내 토양에서 분리된 방선균(Streptomyces sp. CK4412)로부터 생합성 되는 항진균성 2차 대사산물로서, Cyclosporin및 FK506과 같은 기존의 면역억제제보다 작용 메카니즘 및 효능이 훨씬 탁월한 선형의 폴리케타이드계 면역억제 화합물이다. 고체배지의 pH변화와 TMC생산성과의 상관관계를 규명하기 위하여, 방선균 CK4412를 다양한 pH조건에서 배양하면서 항진균 활성 및 TMC생산량을 비교분석 하였다. 고체배지의 pH를 산성조건(pH 4-5)으로 유지하여 방선균 CK4412 균주를 배양할 경우, 중성 pH 조건에서 배양한 경우보다 훨씬 탁월한 항진균 활성 및 TMC생산성이 관찰되었다. 본 연구결과는 대표적인 방선균 S. coelicolor에서 입증된 pH-shock게 의한 2차대사산물의 생산성 증대효과가 대사산물의 특성과 균주가 전혀 다른 TMC 생산균주 CK4412에서도 관찰됨을 입증함으로써, pH조절에 의한 다양한 종류의 방선균 유래 유용 생리활성물질의 생산성 증대 전략을 제시하고 있다.

Tautomycetin (TMC), which is produced by Streptomyces sp. CK4412, is a novel activated T cell-specific immunosuppressive compound with an ester bond linkage between a terminal cyclic anhydride moiety and a linear polyketide chain bearing an unusual terminal alkene. Antifungal activity against Aspergillus niger and TMC productivity assayed by HPLC using culture extracts from Streptomyces sp. CK4412 grown on solid medium adjusted at various pH were measured. The cells cultured at acidic pH (pH 4-5) medium exhibited much stronger antifungal activity as well as higher TMC productivity than those cultured at neutral pH medium, implying that the acidic pH-shock should be an efficient strategy to induce the productivity of secondary metabolites in Streptomyces culture.

키워드

참고문헌

  1. Alderson G, D. A. Ritchie, C. Cappellano, R. H. Cool, N. M. Ivanova, A. S. Huddleston, C. S. Flaxman, V. Kristufek and A. Lounes. 1993. Physiology and genetics of antibiotic production and resistance. Res. Microbiol. 144: 665-672 https://doi.org/10.1016/0923-2508(93)90072-A
  2. Champness, W. 1988. New loci required for Streptomyces coelicolor morphological and physiological differentiation. J. Bacteriol. 170: 1168-1174 https://doi.org/10.1128/jb.170.3.1168-1174.1988
  3. Chater, K. F. 1990. Multi-level regulation of Streptomyces differentiation. Trends Genet. 5: 372-377 https://doi.org/10.1016/0168-9525(89)90172-8
  4. Chater, K. F. 1992. Genetic regulation of secondary metabolic pathways in Streptomyces. Ciba Found. Symp. 171: 144-162
  5. Cheng, X. C., T. Kihara, X. Ying, M. Uramoto, H. Osada, H., Kusakabe, B. N. Wang, Y. Kobayashi, K. Ko, I. Yamaguchi, Y. C. Shell, and K. Isono. 1989. A new antibiotic, tautomycetin. J. Antibiot. 42: 141-144 https://doi.org/10.7164/antibiotics.42.141
  6. Choi, S. S., Y. A. Hur, D. H. Sherman, and E.-S Kim. 2007. Isolation of the biosynthetic gene cluster for tautomycetin, a linear polyketide T cell-specific immunomodulator from Streptomyces sp. CK4412. Microbiology 153: 1095-1102 https://doi.org/10.1099/mic.0.2006/003194-0
  7. Doull, J. C., S. W. Ayer, A. K. Singh, and P. Thibault. 1993. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J. Antibiot. 44: 869-871
  8. Doull, J. L. and L. C. Vining. 1990. Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate. Appl. Microbiol. Biotechnol. 32: 449-454 https://doi.org/10.1007/BF00903781
  9. Hayes, A., G. Hobbs, C. P. Smith, S. G Oliver, and P. R. Butler. 1997. Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3(2). J. Bacteriol. 179: 5511-5515 https://doi.org/10.1128/jb.179.17.5511-5515.1997
  10. Hopwood, D. A. 1987. Towards an understanding of gene switching in Streptomyces, the basis: of sporulation and antibiotic production. Proc. R. Soc. Lond. Series B 23: 2257-2269
  11. Kim, C. J., Y. K. Chang, and G T. Chun. 2000. Enhancement of kasugamycin production by pH shock in batch cultures of Streptomyces kasugaensis. Biotechnol. Prog. 16: 548-552 https://doi.org/10.1021/bp000038f
  12. Sarubbi, E., K. E. Rudd, and M. Cashel. 1988. Basal ppGpp level adjustment shown by new spoT mutants affect steady state growth rates and rrnA ribosomal promoter regulation in Escherichia coli. Mol. Gen. Genet. 213: 214-222 https://doi.org/10.1007/BF00339584
  13. Shim, J. H., H. K. Lee, E. J. Chang, W. J. Chae, J. H. Han, D. J Han, T. Morio, J. J. Yang, A. Bothwell, and S. K. Lee. 2002. Immunosuppressive effects of tautomycetin in vivo and in vitro via T cell-specific apoptosis induction. Proc. Natl. Acad. Sci. USA 99: 10617-10622
  14. Williams S. T., M. Goodfellow, G Alderson, E. M. Wellington, P. H. Sneath, and M. J. Sackin. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743-1813