Monitoring of Antimicrobial Resistant Bacteria from Animal Farm Environments in Korea

국내 축산 환경 중의 항생제 내성균 모니터링에 관한 연구

  • Kwon, Young-Il (Test and Research Center, Korea Consumer Protection Board) ;
  • Kim, Tae-Woon (Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim, Hae-Yeong (Graduate School of Biotechnology, Kyung Hee University) ;
  • Chang, Yun-Hee (Department of Food and Nutrition, Myongji University) ;
  • Kwak, Hyo-Sun (Center for Food Safety Evaluation, Korea Food and Drug Administration) ;
  • Woo, Gun-Jo (Center for Food Safety Evaluation, Korea Food and Drug Administration) ;
  • Chung, Yun-Hee (Test and Research Center, Korea Consumer Protection Board)
  • 권영일 (한국소비자보호원 시험검사소 식품미생물팀) ;
  • 김태운 (경희대학교 식품생명공학과) ;
  • 김해영 (경희대학교 식품생명공학과) ;
  • 장윤희 (명지대학교 식품영양학과) ;
  • 곽효선 (식품의약품안전청 식품평가부 식품미생물팀) ;
  • 우건조 (식품의약품안전청 식품평가부 식품미생물팀) ;
  • 정윤희 (한국소비자보호원 시험검사소 식품미생물팀)
  • Published : 2007.03.28

Abstract

The kinds and quantity of antimicrobial agents used for cattle (animal industry) may be considerable, suggesting the possibility that pathogenic bacteria which cannot be extirpated by the existing antimicrobial agents could appear. Ten cattle, pig and chicken farms, respectively, were randomly selected from 5 provinces in Korea and the samples were collected from excrement, manure, underground water, farmers' hands and the neishboring environment. h total of 299 samples were examined and 197 of Escherichia coli, 13 of Campylobacter jejun/coli, 223 of Enterococcus faecium/faecalis and 42 of Staphylococcus aureus isolates were collected. All isolates were screened for antimicrobial resistance: 69.4% of E. coli (137/197 strains), 78.6% of S. aureus (33/42 strains), and 82.1% of E. faecium/faecalis (183/223 strains) were resistant to one antimicrobial agent and all of C. jejuni/coli Isolates showed the resistance to one antimicrobial agent. Meanwhile, the multiple resistance ratio for more than 4 lines of antimicrobial agent was 19.2% of E. coli (38/197 strains), 11.9% of S. aureus (5/42 strains), 15.4% of C. jejuni/coli (2/13 strains) and 6.2% of E. faecium/faecalis (14/223 strains). The antimicrobial resistance ratio of bacteria isolated from the cattle farm showed lower than that of bacteria isolated from the pig or chicken farm, which might be related to the quantify of antimicrobial agents consumed. And one strain of vancomycin resistant E..faecium (VREF) were isolated from the excrement of chicken and stream, respectively. Generally, the ratio of VREF collected in animal farm environments is lower than that of VREF collected in medical environment.

국내 지역을 경기도, 강원도, 충청도, 전라도, 경상도로 크게 5그룹으로 구분한 후 각각을 2곳의 군단위로 나누어 총 10곳의 지역으로 구분한 뒤, 국내 축산의 주요 축종인 소, 돼지, 닭 축사를 중심으로 분변, 퇴비, 축산인의 손, 지하수, 토양, 하천에서 E. coli 197균주, S. aureus 42균주, C. jejuni/coli 13균주, E. faecium/faecalis 223균주를 분리하여 항생제 감수성 시험을 실시하였다. 모니터링 결과 축산환경에서 분리된 균 중 한 가지 이상의 항생제에 대한 내성율은 E. coli 69.4%(137균주), S. aureus 78.6%(33균주), C. jejuni/coli 100%(13균주), E. faecium/faecalis 82.1%(183균주)를 나타내었다. 또한 4계열 이상의 항생제 내성이 있는 다제 내성율은 각각 19.2%(38균주), 11.9%(5균주), 15.4%(2균주), 6.2%(14균주)였다. 그리고 환경 중에서 VREF 2개 균주를 분리하였다. 축종별 항생제 사용추이를 살펴보면, 소, 돼지, 닭 및 수산용 등 주요 사육가축에 한정하여 판매량을 조사한 결과 소의 경우 01년부터 연도별로 6%, 9%, 8% 판매, 돼지 경우 01년부터 연도별로 57%, 56%, 55% 판매, 닭의 경우 01년부터 연도별로 23%, 23%, 26% 판매, 수산용의 경우 01년부터 연도별로 14%, 12%, 11%판매된 것으로 조사되었다[18]. 이는 소축사 환경에서 분리한 균이 돼지나 닭 축사 환경에서 분리한 균보다 내성율이 낮게 나타나 항생제 사용량과 관계가 있는 것을 추측할 수 있었다. 전체적으로 분리된 균의 내성율이 임상에서 분리되는 균의 항생제 내성율에 비해서는 낮게 검출되었다. 그러나 하천, 토양, 축산인의 손, 지하수 등에서 분리된 균의 항생제 내성회득 결과는 동물의 분변 등 환경관리에 대한 좀 더 많은 관심과 정책이 필요할 것으로 사료되었다 또한 축산 환경에서 분리된 내성균이 많지 않은 국내 현실을 감안할 때 본 연구에서 분리된 균주들은 향후 항생제 내성균 전파 경로를 추적하는 좋은 연구 자료가 될 것으로 사료되었다.

Keywords

References

  1. Baele, M., P. Baele, M. Vaneechoutte, V. Storms, P. Butaye, L. A. Devriese, G Verschraegen, M. Gillis, and F. Haesebrouck. 2000. Application of tRNA intergenic spacer PCR for Identification of Enterococcus Species. J. Clin. Microbiol. 38: 4201-4207
  2. Bernard Dixon. 2000. Antimicrobials as growth promoters : risks and alternatives. ASM News. 66: 264-265
  3. Boerlin, P., P. Kuhnert, D. Hussy, and M. Schaellibaum. 2003. Methods for identification of Staphylococcus aureus isolates in cases of bovine mastitis. J. Clin. Microbiol. 41: 767-771 https://doi.org/10.1128/JCM.41.2.767-771.2003
  4. Chapin K. and M. Musgnug. 2003. Evaluation of three rapid methods for the direct identification of Staphylococcus aureus from positive blood cultures. J. Clin. Microbiol. 41: 4324-4327 https://doi.org/10.1128/JCM.41.9.4324-4327.2003
  5. Cheng, S., F. K. McCleskey, M. J. Gress, J. M. Petroziello, R. L. Namdari, K. Beninga, A. Salmen, and V. G. DelVecchio. 1997. A PCR assay for identification of Enterococcus faecium. J. Clin. Microbiol. 35: 1248-1250
  6. Chung, Y. H., S. Y. Kim, and Y. H. Chang. 2003. Prevalence and antimicrobial susceptibility of Salmonella isolated from foods in Korea from 1993 to 2001. J. Food Prot. 66: 1154-1157 https://doi.org/10.4315/0362-028X-66.7.1154
  7. Cloak, O. M. and P. M. Fratamico. 2002. A multiplex polymerase chain reaction for the differentiation of Campylobacter jujuni and Campylobacter coli from a swine processing facility and characterization of isolates by pulsed-field gel electrophoresis and antimicrobial resistance profiles. J. Food Prot. 65: 266-273 https://doi.org/10.4315/0362-028X-65.2.266
  8. Delpassand E. S., M. V. Chari, C. E. Stager, J. D. Morrisett, J. I. Ford, and M. Romazi. 1995. Rapid identification of common human pathogens by high-resolution proton magnetic resonance spectroscopy. J. Clin. Microbiol. 33: 1258-1262
  9. Doorn, L-J. A. V. Haperen, A. Burnens, M. Huysmans, P. Vandamme, B. A. J. Giesendorf, M. J. Blaser, and W. G Quint. 1999. Rapid identification of thermotolerant Campylobacter jejuni, Campylobacter coli, Campylobacter lari, and Campylobacter upsaliensis from various geographic locations by a GrPase-based PCR-reverse hybridization assay. J. Clin. Microbiol. 37: 1790-1796
  10. Dutka-Malen, S., S. Evers, and P. Courvalin. 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant Enterococci by PCR. J. Clin. Microbiol. 33: 24-27
  11. FDA. 2001. Antimicrobial Resistance A Growing Threat
  12. Holliday, M. G, M. Ford, J. D. Perry, and F. K. Goul. 1999. Rapid identification of Staphylococcus aureus by using fluorescent staphylocoagulase assays. J. Clin. Microbiol. 37: 1190-1192
  13. Hong, Y. M. E. Berrang, J. Liu, C. L. Hofacre, S. Sanchez, L. Wang, and J. J. Maurer. 2003. Rapid detection of Campylobacter coli, C. jejuni, and Salmonella enterica on poultry carcasses by using PCR-enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 69: 3492-3499 https://doi.org/10.1128/AEM.69.6.3492-3499.2003
  14. Horn, K. G, C. A. Gedris, and K. M. Rodney. 1996. Selective isolation of vancomycin-resistant Enterococci. J. Clin. Microbiol. 34: 924-927
  15. Institute of resistant bacteria. 2003. Susceptibility of bacteria for antimicrobials isolated in the year 2002. News, 11: 1-2
  16. Jensen, M. W., W. C. Downs, J. D. Murray, T. R. Nicoll, S. D. Lefevre, and C. M. Meyers. 1987. Staphylococcosis of turkey. 1. portal of entry and tissue colonization. Avian Dis. 31: 64-69 https://doi.org/10.2307/1590774
  17. Joseph S. W., J. R. Hayes, L. L. English, L. E. Carr, and D. D. Wagner. 2001. Implications of multiple antimicrobial-resistant enterococci associated with the poiltry environment. Food Addit. Contam. 18: 1118-1123 https://doi.org/10.1080/02652030110051275
  18. Jung, S. C. (National Veterinary Research and Quarantine Service) 2003. Report on control of antimicrobial resistant bacteria in Korea. pp. 198-203. Construction of control system of antimicrobials for domestic animals. Korea Food and Drug Administration
  19. Khan, S. A., M. S. Nawaz, A. A. Khan, R. S. Steele, and C. E. Cerniglia. 2000. Characterization of erythromycin-resistant methylase genes from multiple antimicrobial resistant Staphylococcus spp. isolated from milk samples of lactating cows. Am. J. Vet. Res. 61: 1128-1132 https://doi.org/10.2460/ajvr.2000.61.1128
  20. Kim, J. S., Y. S. Lee, J. K. Lee, J. I. You, H. B. Kim,Y. H. Choi, and Y. J. Kim. 2000. The survey of vancomycin resistant Enterococcus isolated from clinic and animals. KNIH. 37: 40-52
  21. Kohner, P. C., R Patel, J. R. UbI, K. M. Garin, M. K. Hopkins, L. T. Wegener, and F. R. Cockerill. 1997. Comparison of agar dilution, broth microdilution, E-test, disk diffusion, and automated Vitek methods for testing susceptibilities of Enterococcus spp. to vancomycin. J. Clin. Microbiol. 35: 3258-3263
  22. Kuhnert P., J. Nicolet, and J. Frey. 1995. Rapid and accurate identification of Escherichia coli K-12 strains. Appl. Environ. Microbiol. 61: 4135-4139
  23. Lee, K. Y. 2002, Monitoring of antimicrobial resistant bacteria in domestic. pp. 23-25. National Institute of Toxicological Research
  24. Moschetti, G., G. Blaiotta, F. Villani, S. Coppola, and E. Parente. 2001. Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecium from randomly amplified polymorphic DNA patterns. Appl. Environ. Microbiol. 67: 2156-2166 https://doi.org/10.1128/AEM.67.5.2156-2166.2001
  25. National Committee for Clinical Laboratory Standards. 2001. Performance standards for antimicrobial disk susceptibility tests, 7th ed. Approved standard MA7. National Committee for Clinical Laboratory Standards. Wayne. PA
  26. Nawaz, M. S., A. A. Khan, S. A., Khan, D. D. Paine, J. V. Pothuluri., and C. E. Cerniglia. 1998. Biochemical and molecular characterization of erythromycin resistant avian Staphylococcus spp. isolated from chickens. Poult. Sci. 78: 1191-1197
  27. Ng S. P., C. O. Tsui, D. Roberts, P. Y. Chau, and M. H. Ng. 1996. Detection and serogroup differentiation of Salmonella spp. in food within 30 hours by enrichment-immunoassay with a T6 monoclonal antibody capture enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 62: 2294-2302
  28. Pignato, S., A. M. Marino, M. C. Emanuele, V. Iannotta, S. Caracappa, and G. Giammanco. 1995. Evaluation of new culture media for rapid detection and isolation of Salmonella in foods. Appl. Environ. Microbiol. 61: 1996-1999
  29. Pinto, B., R. Pierotti, G Canale, and D. Reali. 1999. Characterization of faecal streptococci as indicator of faecal pollution and distribution in the environment. Lett. Appl. Microbiol. 29: 258-263 https://doi.org/10.1046/j.1472-765X.1999.00633.x
  30. Rhodes, G., G. Huys, H. Swings, P. McGann, M. Hiney, P. Smith, and W. P. Roger. 2000. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tnl in dissemination of the tetracycline resistance determinant Tet A. Appl. Environ. Microbiol. 66:3883-3890 https://doi.org/10.1128/AEM.66.9.3883-3890.2000
  31. Rice B. E., C. Lamichhane, S. W. Joseph, and D. M. Rollins. 1996. Development of a rapid and specific colony-lift immunoassay for detection and enumeration of Campylobacter jejuni, C. coli, and C. lari. Clin. Diagn. Lab. Immunol. 3: 669-677
  32. Saenz, Y., M. Zarazaga, M. Lantero, M. J. Gastanares, F. Baquero, and C. Torres. 2000. antimicrobial resistance in Campylobacter strains isolated from animals, foods, and humans in Spain in 1997-1998. Antimicrob. Agents Chemother. 1: 267-271
  33. Saha, S. K., G. L. Darmstadt, A. H. Baqui, M. Hanif, M. Ruhulamin, M. Santosham, T. Nagatake, and R. E. Black. 2001. Rapid Identification and antimicrobial susceptibility testing of Salmonella enterica Serovar Typhi isolated from blood: implications for therapy. J. Clin. Microbiol. 39: 3583-3585 https://doi.org/10.1128/JCM.39.10.3583-3585.2001
  34. Song, J. H. 1999. Emerging infectious disease due to microbial adaptation: emergence and spread of antimicrobial resistance. Kor. J. Infect. Dis. 31: 79-87
  35. Song, J. H., J. W. Yang, J. H. Joung, S. J. Kang, and N. Y. Lee. 2000. Unique alterations in Penicillin-binding protein 2B of multidrug-resistant Streptococcus pneumoniae from Korea. Kor. J. Infect. Dis. 32: 108-114
  36. Stender, H., A. J. Broomer, K. Oliveira, H. Perry-O'Keefe, J. J. Hyldig-Nielsen, A. Sage, and J. Coulll. 2001. Rapid detection, identification, and enumeration of Escherichia coli cells in municipal water by chemiluminescent In Situ hybridization. Appl. Environ. Microbiol. 67: 142-147 https://doi.org/10.1128/AEM.67.1.142-147.2001
  37. Waage, A. S., T. Vardund, V. Lund, and G Kapperud. 1999. Detection of small numbers of Campylobacter jejuni and Campylobacter coli cells in environmental water, sewage, and food samples by a seminested PCR Assay. Appl. Environ. Microbiol. 65: 1636-1643
  38. Wolfgang, W. 1998. Medical consequences of antimicrobial use in agriculture. Science. 13279: 996-997