Glycosylation of Flavonoids with E. coli Expressing Glycosyltransferase from Xanthomonas campestris

  • Kim, Jeong-Ho (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Bong-Gyu (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Jae-Ah (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Park, Young-Hee (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Yoon-Jung (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lim, Yoong-Ho (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Ahn, Joong-Hoon (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University)
  • Published : 2007.03.31

Abstract

Glycosyltransferase family 1 (UOT) uses small chemicals including phenolics, antibiotics, and alkaloids as substrates to have an influence in biological activities. A glycosyltransferase (XcGT-2) from Xanthomonas campestris was cloned and consisted of a 1,257 bp open reading frame encoding a 45.5 kDa protein. In order to use this for the modification of phenolic compounds, XcGT-2 was expressed in Escherichia coli as a glutathione S-transferase fusion protein. With the E. coli transformant expressing XcGT-2, biotransformation of flavonoids was carried out. Flavonoids having a double bond between carbons 2 and 3, and hydroxyl groups at both C-3' and C-4', were glycosylated and the glycosylation position was determined to be at the hydroxyl group of C-3', using nuclear magnetic resonance spectroscopy. These results showed that XcGT-2 regiospecifically transferred a glucose molecule to the 3'-hydroxyl group of flavonoids containing both 3' and 4'-hydroxyl groups.

Keywords

References

  1. Bowles, D., J. Lsayenkova, E.-K. Lim, and B. Poppenberger. 2005. Glycosyltransferases: Managers of small molecules. Curr. Opin. Plant Biol. 8: 254-263 https://doi.org/10.1016/j.pbi.2005.03.007
  2. Cowan, M. M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582
  3. da Silva, A. C. R., J. A. Ferro, and F. C. Reinach. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417: 459-463 https://doi.org/10.1038/417459a
  4. Harborne, J. B. 1986. Nature, distribution, and function of plant flavonoids. Prog. Clin. Biol. Res. 213: 15-24
  5. Hollamn, P. C., M. N. C. P. Bijsman, Y. van Gameren, E. P. J. Cnossen, J. H. M. De Vries, and M. B. Katan. 1999. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free. Rad. Res. 31: 569-573 https://doi.org/10.1080/10715769900301141
  6. Hong, J. S. J., W. S. Kim, S. K. Lee, H. S. Koh, H. S. Park, S. J. Park, Y. S. Kim, and Y. J. Yoon. 2005. The role of a second protein (DesVIII) in glycosylation for the biosynthesis of hybrid macrolide antibiotics in Streptomyces venezuelae. J. Microbiol. Biotechnol. 15: 640-645
  7. Kang, S., S. Lee, C. Kwon, and S. Jung. 2006. Solubility enhancement of flavonoids by cyclosophoraose isolated from Rhizobium meliloti 2011. J. Microbiol. Biotechnol. 16: 791-794
  8. Kim, D. H., B. G. Kim., Y. Lee, J. Y. Ryu, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2005. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J. Biotech. 19: 155-162
  9. Kramer, C. M., R. T. N. Prata, M. G. Willits, V. De Luca, J. C. Steffens, and G. Graser. 2003. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 64: 1069-1076 https://doi.org/10.1016/S0031-9422(03)00507-7
  10. Lee, H. J., B. G. Kim, and J.-H. Ahn. 2006. Molecular cloning and characterization of Bacillus cereus Omethyltransferase. J. Microbiol. Biotechnol. 16: 619-622
  11. Lee, Y. J., B. G. Kim, Y. Park, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2006 Biotransformation of flavonoids with Omethyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096
  12. Lim, E.-K., D. A. Ashford, B. Hou, R. G. Jackson, and D. J. Bowles. 2004. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol. Bioeng. 87: 623- 631 https://doi.org/10.1002/bit.20154
  13. Mackenzie, P. I., I. S. Owens, B. Burchell, K. W. Bock, A. Bairoch, A. Belanger, S. Fournel-Gigleux, M. Green, D. W. Hum, T. Iyanagi, D. Lancet, P. Louisor, J. Magdalow, J. R. Chowdhury, J. K. Ritter, H. Schachter, T. R. Tephly, K. F. Tipton, and D. W. Nebert. 1997. The UDP glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7: 255-269 https://doi.org/10.1097/00008571-199708000-00001
  14. Martini, N. D., D. R. Katerere, and J. N. Eloff. 2004. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 93: 207-212 https://doi.org/10.1016/j.jep.2004.02.030
  15. Mendez, C. and J. A. Salas. 2001. Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol. 19: 449-456 https://doi.org/10.1016/S0167-7799(01)01765-6
  16. Nawwar, M. A. M., S. A. M. Hussein, and I. Merfort. 1994. Leaf phenolics of Punica granatum. Phytochemistry 37: 1175-1177 https://doi.org/10.1016/S0031-9422(00)89552-7
  17. Ryu, J.-Y. and H.-G. Hur. 2005 Comparative analyses of flavonoids for nod gene induction in Bradyrhizobium japonicum USDA110. J. Microbiol. Biotechnol. 15: 1280- 1285
  18. Thorson, J. S., W. A. Barton, D. Hoffmeister, C. Albermann, and D. B. Nikolov. 2004. Structure-based enzyme engineering and its impact on in vitro glycorandomization. ChemBioChem. 5: 16-25 https://doi.org/10.1002/cbic.200300620
  19. Vogt, T., E. Zimmermann, R. Grimm, M. Meyer, and D. Stack. 1997. Are the characteristics of betanidin glucosyltransferases from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferases? Planta 203: 349-361 https://doi.org/10.1007/s004250050201
  20. Vogt, T. and P. Jones. 2000. Glycosyltransferases in plant natural product synthesis: Characterization of a supergene family. Trends Plant Sci. 5: 380-386 https://doi.org/10.1016/S1360-1385(00)01720-9