Accurate Delimitation of Phanerochaete chrysosporium and Phanerochaete sordida by Specific PCR Primers and Cultural Approach

  • Lim, Young-Woon (Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Baik, Keun-Sik (Department of Biological Sciences, College of Natural Science, Sunchon National University) ;
  • Chun, Jong-Sik (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Lee, Kang-Hyun (Insect Resources Research Center, KRIBB) ;
  • Jung, Won-Jin (Insect Resources Research Center, KRIBB) ;
  • Bae, Kyung-Sook (Insect Resources Research Center, KRIBB)
  • Published : 2007.03.31

Abstract

White rot fungi, Phanerochaete chrysosporium and Phanerochaete sordida, have been mostly studied in a variety of industrial processes like biopulping and pulp bleaching as well as in bioremediation. Whereas P. sordida is widely distributed in the North Temperate Zone, P. chrysosporium is reported in the restricted area and hundreds of reports have been described from a few strains of P. chrysosporium, which are deposited at various fungal collections in the world. The isolates of two species are not easily discriminated because of their morphological and molecular similarity. Through the ITS sequence analyses, a region containing substantial genetic variation between the two species was identified. PCR amplification using two specific primers was successfully used to differentiate P. chrysosporium from P. sordida. These results were supported by cultural studies. The growth rates at $37^{\circ}C$ on PDA, MEA, and Cza and the microscopic features of conidia on PDA and YMA were also very useful to differentiate those two species.

Keywords

References

  1. Aust, S. D. 1990. Degradation of environmental pollutants by Phanerochaete chrysosporium. Microbiol. Ecol. 20: 197- 209 https://doi.org/10.1007/BF02543877
  2. Bahnweg, G., E. M. Möller, S. Anegg, C. Langebartels, O. Wienhaus, and H. Sandermann. 2002. Detection of Heterobasidion annosum s.l. [(Fr.) Bref.] in Norway spruce by polymerase chain reaction. J. Phytopathol. 150: 382- 389 https://doi.org/10.1046/j.1439-0434.2002.00772.x
  3. Boidin, J., J. Mugnier, and R. Canales. 1998. Taxonomie moleculaire des Aphyllophorales. Mycotaxon 66: 445-491
  4. Bumpus, J. A., M. Tien, D. Wright, and S. D. Aust. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434-1436 https://doi.org/10.1126/science.3925550
  5. Burdsall, H. H. 1985. A contribution to the taxonomy of the genus Phanerochaete (Corticiaceae, Aphyllophorales). Mycologia Memoir 10: 1-165
  6. Burdsall, H. H. and W. E. Eslyn. 1974. A new Phanerochaete with a chysosporium imperfect state. Mycotaxon 1: 123- 133
  7. Chen, W., L. E. Gray, and C. R. Grau. 1996. Molecular differentiation of fungi associated with brown stem rot and detection of Phialophora gregata in resistant and susceptible soybean cultivars. Phytopathology 86: 1140-1148 https://doi.org/10.1094/Phyto-86-1140
  8. Choi, W.-Y., S.-O. Kim, J.-H. Lee, J.-M. Lee, I.-J. Lee, K.-J. Cho, I.-K. Rhee, J.-B. Kwon, and J.-G. Kim. 2005. Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15: 22- 28
  9. Chung, N.-H., G.-Y. Kang, G.-H. Kim, I.-S. Lee, and W.-G. Bang. 2001. Effect of nutrient nitrogen on the degradation of pentachlorophenol by white rot fungus, Phanerochaete chrysosporium. J. Microbiol. Biotechnol. 11: 704-708
  10. Davis, M. W., J. A. Glaser, J. W. Evans, and R. T. Lamar. 1993. Field evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ. Sci. Technol. 27: 2572-2576 https://doi.org/10.1021/es00048a040
  11. Dietrich, D. M. and R. T. Lamar. 1990. Selective medium for isolating Phanerochaete chrysosporium from soil. Appl. Environ. Microbiol. 56: 3088-3092
  12. Eriksson, J., K. Hjortstam, and L. Ryvarden. 1978. The Corticiaceae of North Europe. Vol. 5. Fungiflora. Oslo, Norway
  13. Eslyn, W. E. 1967. Outside storage of hardwood chips in the Northeast. II. Microbiological effects. Tappi 50: 297-303
  14. Gardes, M. and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113- 118 https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  15. Garzillo, A. M., M. C. Colao, C. Caruso, C. Caporale, D. Celletti, and V. Buonocore. 1998. Laccase from the white-rot fungus Trametes trogii. Appl. Microbiol. Biotechnol. 49: 545-551 https://doi.org/10.1007/s002530051211
  16. Germain, H., G. Laflamme, L. Bernier, B. Boulet, and R. C. Hamelin. 2002. DNA polymorphism and molecular diagnosis in Inonotus spp. Can. J. Plant Pathol. 24: 194-199 https://doi.org/10.1080/07060660309506995
  17. Harazono, K., R. Kondo, and K. Sakai. 1996. Bleaching of hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of $MnSO_{4}$. Appl. Environ. Microbiol. 62: 913-917
  18. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: Production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125-135 https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  19. Hibbett, D. S. and R. G. Thorn. 2001. Basidiomycota: Homobasidiomycetes. In McLaughlin, D. J., McLaughlin, E. G. and Lemke, P. A. (eds.), The Mycota. Vol. VII. Systematics and Evolution. Berlin, Germany, Springer- Verlag
  20. Hunt, R. S. and F. W. Cobb. 1971. Selective medium for the isolation of wood rotting basidiomycetes. Can. J. Bot. 49: 2064-2065 https://doi.org/10.1139/b71-290
  21. Jeong, W. J., Y. W. Lim, J. S. Lee, and H. S. Jung. 2005. Phylogeny of Phellinus and related genera inferred from combined data of ITS and mitochondrial SSU rDNA sequences. J. Microbiol. Biotechnol. 15: 1028-1038
  22. Jones, D. and A. K. Bej. 1994. Detection of flood-borne microbial pathogens using polymerase chain reaction methods, pp. 341-365. In Griffin, H. G. and A. M. Griffin (eds.), PCR Technology, Current Innovations. CRC Press, London, U.K
  23. Johnston, C. G. and S. D. Aust. 1994. Detection of Phanerochaete chrysosporium in soil by PCR and restriction enzyme analysis. Appl. Environ. Microbiol. 60: 2350-2354
  24. Kang, S. W., S. I. Hong, and S. W. Kim. 2005. Identification of Aspergillus strain with antifungal activity against Phytophthora species. J. Microbiol. Biotechnol. 15: 227- 233
  25. Kondo, R., K. Kurashiki, and K. Sakai. 1994. In vitro bleaching of hardwood kraft pulp by extracellular enzymes excreted from white rot fungi in a cultivation system using a membrane filter. Appl. Environ. Microbiol. 60: 921-926
  26. Lamar, R. T. 1992. The role of fungal lignin-degrading enzymes in xenobiotic degradation. Curr. Opin. Biotechnol. 3: 261-266 https://doi.org/10.1016/0958-1669(92)90101-N
  27. Lamar, R. T. and D. M. Dietrich. 1990. In situ depletion of pentachloro-phenol from contaminated soil by Phanerochaete spp. Appl. Environ. Microbiol. 56: 3039-3100
  28. Lamar, R. T., J. A. Glaser, and T. K. Kirk. 1992. White rot fungi in the treatment of hazardous chemicals and wastes, pp. 127-143. In G. F. Leatham (ed.), Frontiers in Industrial Mycology. Chapman & Hall, New York
  29. Lamar, R. T., M. J. Larsen, and T. K. Kirk. 1990. Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl. Environ. Microbiol. 56: 3519-3526
  30. Lindgren, R. M. and W. E. Eslyn. 1961. Biological deterioration of pulpwood and pulp chips during storage. Tappi 44: 419-429
  31. Lim, Y. W. 2001. Systematic study of corticioid fungi based on molecular sequence analyses. PhD Dissertation. Seoul National University, South Korea
  32. Lim, Y. W., Y. H. Kim, and H. S. Jung. 2000. The Aphyllophorales of Mungyong Saejae. Mycobiology 28: 142-148 https://doi.org/10.1080/12298093.2000.12015740
  33. Martinez, D., L. F. Larrondo, N. Putnam, S. M. D. Gelpke, K. Huang, J. Chapman, K. G. Helfenbein, P. Ramaiya, J. C. Detter, F. Larimer, P. M. Coutinho, B. Henrissat, R. Berka, D. Cullen, and D. Rokhsar. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22: 695-700 https://doi.org/10.1038/nbt967
  34. Novotny, C., P. Erbanova, T. Cajthamal, N. Rothschild, C. Dosoretz, and V. Sasek. 2000. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl. Microbiol. Biotechnol. 54: 850-853 https://doi.org/10.1007/s002530000432
  35. Rajakumar, S., J. Gaskell, D. Cullen, S. Lobos, E. Karahanian, and R. Vicuna. 1996. Lip-like genes in Phanerochaete sordida and Ceriporiopsis subermispora, white rot fungi with no detectable lignin peroxidase activity. Appl. Environ. Microbiol. 62: 2660-2663
  36. Ruttimann-Johnson, C., D. Cullen, and R. T. Lamar. 1994. Manganese peroxidase of the white rot fungus Phanerochaete sordida. Appl. Environ. Microbiol. 60: 599-605
  37. Tien, M. and T. D. Kirk. 1983. Lignin-degrading enzyme from the hymenomycetes Phanerochaete chrysosporium Burds. Science 221: 661-663 https://doi.org/10.1126/science.221.4611.661
  38. White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.), PCR Protocols: A Guide to Methods and Application. Academic Press, San Diego, U.S.A
  39. Willits, D. A. and J. E. Sherwood. 1998. Polymerase chain reaction detection of Ustilago hordei in leaves of susceptible and resistant barley varieties. Phytopathology 89: 212-217 https://doi.org/10.1094/PHYTO.1999.89.3.212
  40. Zhang, X.-Z., H.-Y. Kim, and B.-S. Kim. 2006. Analysis of genetic diversity of Phytophthora infestans in Korea by using molecular markers. J. Microbiol. Biotechnol. 16: 423- 430
  41. Zhao, J., T. H. Koker, and B. J. H. Janse. 1995. First report of the white rotting fungus Phanerochaete chrysosporium in South Africa. S. Afri. J. Bot. 61: 167-168 https://doi.org/10.1016/S0254-6299(15)30503-2