Enzymatic Characterization and Substrate Specificity of Thermostable $\beta-Glycosidase$ from Hyperthermophilic Archaea, Sulfolobus shibatae, Expressed in E. coli

  • Park, Na-Young (Department of Food Science and Biotechnology, Graduate School of Biotechnology & Institute of Life Sciences and Resources, KyungHee University) ;
  • Cha, Jae-Ho (Department of Microbiology, Pusan National University) ;
  • Kim, Dae-Ok (Department of Food Science and Biotechnology, Graduate School of Biotechnology & Institute of Life Sciences and Resources, KyungHee University) ;
  • Park, Cheon-Seok (Department of Food Science and Biotechnology, Graduate School of Biotechnology & Institute of Life Sciences and Resources, KyungHee University)
  • Published : 2007.03.31

Abstract

Enzymatic properties and substrate specificity of recombinant $\beta-glycosidases$ from a hyperthermophilic archaeon, Sulfolobus shibatae (rSSG), were analyzed. rSSG showed its optimum temperature and pH at $95^{\circ}C$ and pH 5.0, respectively. Thermal inactivation of rSSG showed that its half-life of enzymatic activity at $75^{\circ}C$ was 15 h whereas it drastically decreased to 3.9 min at $95^{\circ}C$. The addition of 10 mM of $MnCl_2$ enhanced the hydrolysis activity of rSSG up to 23% whereas most metal ions did not show any considerable effect. Dithiothreitol (DTT) and 2-mercaptoethanol exhibited significant influence on the increase of the hydrolysis activity of rSSG rSSG apparently preferred laminaribiose $(\beta1\rightarrow3Glc)$, followed by sophorose $(\beta1\rightarrow2Glc)$, gentiobiose $(\beta1\rightarrow6Glc)$, and cellobiose $(\beta1\rightarrow4Glc)$. Various. intermolecular transfer products were formed by rSSG in the lactose reaction, indicating that rSSG prefers lactose as a good acceptor as well as a donor. The strong intermolecular transglycosylation activity of rSSG can be applied in making functional oligosaccharides.

Keywords

References

  1. Atomi, H. 2005. Recent progress towards the application of hyperthermophiles and their enzymes. Curr. Opin. Chem. Biol. 9: 166-173 https://doi.org/10.1016/j.cbpa.2005.02.013
  2. Bang, B. Y., H. J. Kim, H. Y. Kim, M. Y. Baik, S. C. Ahn, C. H. Kim, and C. S. Park. 2006. Cloning and overexpression of 4-$\alpha$-glucanotransferase from Thermus brockianus (TBGT) in E. coli. J. Microbiol. Biotechnol. 16: 1809-1813
  3. Belancic, A., Z. Gunata, M. J. Vallier, and E. Agosin. 2003. $\beta$-Glucosidase from the grape native yeast Debaryomyces vanrijiae: Purification, characterization, and its effect on monoterpene content of a Muscat grape juice. J. Agric. Food Chem. 51: 1453-1459 https://doi.org/10.1021/jf025777l
  4. Bhatia, Y., S. Mishra, and V. S. Bisaria. 2002. Microbial $\beta$glucosidases: Cloning, properties, and applications. Crit. Rev. Biotechnol. 22: 375-407 https://doi.org/10.1080/07388550290789568
  5. Blount, Z. D. and D. W. Grogan. 2005. New insertion sequences of Sulfolobus: Functional properties and implications for genome evolution in hyperthermophilic archaea. Mol. Microbiol. 55: 312-325 https://doi.org/10.1111/j.1365-2958.2004.04391.x
  6. Bruins, M. E., A. E. Janssen, and R. M. Boom. 2001. Thermozymes and their applications: A review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155- 186 https://doi.org/10.1385/ABAB:90:2:155
  7. Chen, L., K. Brugger, M. Skovgaard, P. Redder, Q. She, E. Torarinsson, B. Greve, M. Awayez, A. Zibat, H. P. Klenk, and R. A. Garrett. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187: 4992-4999 https://doi.org/10.1128/JB.187.14.4992-4999.2005
  8. Cho, S. W., J. Y. Ahn, J. H. Bahn, S. G. Jeon, J. S. Park, K. S. Lee, and S. Y. Choi. 2000. Production and characterization of monoclonal antibodies to glutamate dehydrogenase from thermophile Sulfolobus solfataricus. J. Microbiol. Biotechnol. 10: 587-594
  9. Choi, J. Y., J. O. Ahn, S. I. Kim, and H.-J. Shin. 2006. Expression of thermostable $\alpha$-glucosidase from Thermus caldophilus GK24 in recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 2000-2003
  10. Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang, and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the Thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279
  11. Ciaramella, M., F. M. Pisani, and M. Rossi. 2002. Molecular biology of extremophiles: Recent progress on the hyperthermophilic archaeon Sulfolobus. Antonie Van Leeuwenhoek 81: 85-97 https://doi.org/10.1023/A:1020577510469
  12. Dion, M., L. Fourage, J. N. Hallet, and B. Colas. 1999. Cloning and expression of a $\beta$-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconj. J. 16: 27-37 https://doi.org/10.1023/A:1006997602727
  13. Ducret, A., M. Trani, and R. Lortie. 2002. Screening of various glycosidases for the synthesis of octyl glucoside. Biotechnol. Bioeng. 77: 752-757 https://doi.org/10.1002/bit.10156
  14. Egorova, K. and G. Antranikian. 2005. Industrial relevance of thermophilic Archaea. Curr. Opin. Microbiol. 8: 649- 655 https://doi.org/10.1016/j.mib.2005.10.015
  15. Esen, A. 1993. $\beta$-Glucosidases: Overview, pp. 1-14. In Esen, A. (ed.), $\beta$-Glucosidases: Biochemistry and Molecular Biology. American Chemical Society, Washington, DC
  16. Ezaki, S., K. Miyaoku, K. Nishi, T. Tanaka, S. Fujiwara, M. Takagi, H. Atomi, and T. Imanaka. 1999. Gene analysis and enzymatic properties of thermostable $\beta$-glycosidase from Pyrococcus kodakaraensis KOD1. J. Biosci. Bioeng. 88: 130-135 https://doi.org/10.1016/S1389-1723(99)80190-X
  17. Gabelsberger, J., W. Liebl, and K. H. Schleifer. 1993. Purification and properties of recombinant $\beta$-glucosidase of the hyperthermophilic bacterium Thermotoga maritima. Appl. Microbiol. Biotechnol. 40: 44-52
  18. Goyal, K., P. Selvakumar, and K. Hayashi. 2001. Characterization of a thermostable $\beta$-glucosidase (BglB) from Thermotoga maritima showing transglycosylation activity. J. Mol. Cataly. B Enzym. 15: 45-53 https://doi.org/10.1016/S1381-1177(01)00003-0
  19. Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34 https://doi.org/10.1016/S0960-8524(03)00033-6
  20. Kang, S. K., K. K. Cho, J. K. Ahn, S. H. Kang, K. H. Han, H. G. Lee, and Y. J. Choi. 2004. Cloning and expression of thermostable $\beta$-glycosidase gene from Thermus filiformis Wai33 A1 in Escherichia coli and enzyme characterization J. Microbiol. Biotechnol. 14: 584-592
  21. Kengen, S. W. M., E. J. Luesink, A. J. M. Stams, and A. J. B. Zehnder. 1993. Purification and characterization of an extremely thermostable $\beta$-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 213: 305-312 https://doi.org/10.1111/j.1432-1033.1993.tb17763.x
  22. Lodge, J. A., T. Maier, W. Liebl, V. Hoffmann, and N. Strater. 2003. Crystal structure of Thermotoga maritima $\alpha$-glucosidase AglA defines a new clan of $NAD^{+}$-dependent glycosidases. J. Biol. Chem. 278: 19151-19158 https://doi.org/10.1074/jbc.M211626200
  23. Park, T. H., K. W. Choi, C. S. Park, S. B. Lee, H. Y. Kang, K. J. Shon, J. S. Park, and J. Cha. 2005. Substrate specificity and transglycosylation catalyzed by a thermostable $\beta$-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl. Microbiol. Biotechnol. 69: 411-422 https://doi.org/10.1007/s00253-005-0055-1
  24. Petzelbauer, I., A. Reiter, B. Splechtna, P. Kosma, and B. Nidetzky. 2000. Transgalactosylation by thermostable $\beta$-glycosidases from Pyrococcus furiosus and Sulfolobus solfataricus. Binding interactions of nucleophiles with the galactosylated enzyme intermediate make major contributions to the formation of new $\beta$-glycosides during lactose conversion. Eur. J. Biochem. 267: 5055-5066 https://doi.org/10.1046/j.1432-1327.2000.01562.x
  25. Pisani, F. M., R. Rella, C. A. Raia, C. Rozzo, R. Nucci, A. Gambacorta, M. De Rosa, and M. Rossi. 1990. Thermostable $\beta$-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur. J. Biochem. 187: 321-328 https://doi.org/10.1111/j.1432-1033.1990.tb15308.x
  26. Raasch, C., W. Streit, J. Schanzer, M. Bibel, U. Gosslar, and W. Liebl. 2000. Thermotoga maritima AglA, an extremely thermostable $NAD^{+}$-, $Mn^{2+}$-, and thiol-dependent $\alpha$-glucosidase. Extremophiles 4: 189-200 https://doi.org/10.1007/PL00010711
  27. Ahn, S.-H., S.-H. Jeong, J.-M. Kim, Y.-O. Kim, S.-J. Lee, and I.-S. Kong. 2005. Molecular cloning and characterization of alkaliphilic phospholipase B (VFP58) from Vibrio fluvialis. J. Microbiol. Biotechnol. 15: 354-361
  28. Vieille, C. and G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43 https://doi.org/10.1128/MMBR.65.1.1-43.2001
  29. Xiangyuan, H., Z. Shuzheng, and Y. Shoujun. 2001. Cloning and expression of thermostable $\beta$-glycosidase gene from Thermus nonproteolyticus HG102 and characterization of recombinant enzyme. Appl. Biochem. Biotechnol. 94: 243- 255 https://doi.org/10.1385/ABAB:94:3:243
  30. Yang, S. J., H. S. Lee, C. S. Park, Y. R. Kim, T. W. Moon, and K. H. Park. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an $\alpha$-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol. 70: 5988-5995 https://doi.org/10.1128/AEM.70.10.5988-5995.2004
  31. Yoo, J. S., K. W. Han, H. K. Kim, M. H. Kim, and S. T. Kwon. 2000. Purification and characterization of a thermostable $\beta$-glycosidase from Thermus caldophilus GK24. J. Microbiol. Biotechnol. 10: 638-642