DOI QR코드

DOI QR Code

The Establishment of Optimum Fermentation Conditions for Prunus mume Vinegar and Its Quality Evaluation

매실식초의 최적 발효조건 설정 및 품질특성

  • Ko, Yu-Jin (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jeong, Dong-Yuk (Dong-Nam Food Co.) ;
  • Lee, Jeong-Ok (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Mi-Hwa (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Eun-Jung (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jong-Won (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Young-Suk (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ryu, Chung-Ho (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University)
  • 고유진 (경상대학교 응용생명과학부.농업생명과학연구원) ;
  • 정동욱 (동남식품) ;
  • 이정옥 (경상대학교 응용생명과학부.농업생명과학연구원) ;
  • 박미화 (경상대학교 응용생명과학부.농업생명과학연구원) ;
  • 김은정 (경상대학교 응용생명과학부.농업생명과학연구원) ;
  • 김종원 (경상대학교 응용생명과학부.농업생명과학연구원) ;
  • 김영숙 (경상대학교 응용생명과학부.농업생명과학연구원) ;
  • 류충호 (경상대학교 응용생명과학부.농업생명과학연구원)
  • Published : 2007.03.31

Abstract

This study was conducted to improve the Prunus mume vinegar production. The most suitable concentration of the Prunus mume juice was 6%. Static fermentation was a more suitable process for acetic acid fermentation of the Prunus mume vinegar than shaking fermentation. Major components of the organic acids were acetic, citric, tartaric and malic acid at 4.2, 1.2, 0.3, and 0.1%, respectively. Also, major components of the free sugars were glucose and fructose, and 80.96 mg% of asparagine was included in the Prunus mume vinegar as a main free amino acid. Alcohol components of the Prunus mume vinegar were n-propyl alcohol, iso-butyl alcohol, n-butyl alcohol, iso-amyl alcohol, and n-amyl alcohol.

매실식초 사입액에서 초기 매실액의 농도가 $1{\sim}6%$일 때는 농도가 높을수록 유도기가 짧아져 높은 초산생성능을 보이다가 매실액의 농도가 6%를 넘어서면 유도기가 길어져 초산생성능이 저하되는 경향을 보였다. 6%의 매실액을 함유한 사입액은 발효 5일째 9.2%의 최종 산도에 도달하였고, 다른 농도의 첨가구보다 높은 산도를 보였다. 3% 초산, 6% 알콜, 6% 매실액을 함유한 매실식초 사입액 100 mL를 발효시킬 경우 표면적이 $25\;cm^{2}$인 발효용기를 사용하는 것이 $10\;cm^{2}$$50\;cm^{2}$의 발효용기에 배양한 것보다 초산 생성능이 우수함을 확인하였다. 또한 매실액 사입액을 진탕 발효 시켰을 때는 정치 발효에 비해 유도기가 길었고, 배양 9일째에 최종 산도가 9.44%로 나타나서 정치 발효에 비해 약 2.02% 낮게 나타나 매실액을 이용한 초산발효에서는 진탕 배양보다 정치 배양이 더 효과적이었다. 매실식초의 유기산 성분을 분석한 결과 주요 유기산은 acetic acid, succinic acid, citric acid이었고 그 함량은 각각 6167.01, 347.04, 76.67 mg%이었다. 또한 주요 유리당은 glucose와 fructose로 그 함량은 각각 4030.88, 3765.65 mg%이었으며, 주요 유리 아미노산은 asparagine이었고 그 함량은 80.96 mg%이었다. 본 연구에서 검색된 최적 발효 조건에서 매실식초를 제조하여 발효 효율을 향상시킬 수 있을 것으로 기대하며, 유기산, 유리당 등의 함량이 높은 우수한 매실식초의 생산이 가능할 것으로 사료된다.

Keywords

References

  1. Yoon HN. 1998. Simultaneous gas chromatographic analysis of ethanol and acetic acid in vinegar. Korean J Food Sci Technol 30: 1247-1251
  2. Siever M, Teuber M. 1995. The microbiology and toxonomy of Acetobacter europaeus in commercial vinegar production. J Appl Bacteriol Symp Suppl 79: 84-95
  3. Kittelmann M, Stamnn WW, Follmann H, Truper HG. 1989. Isolation and classification of acetic acid bacteria from high percentage vinegar fermentation. Appl Microbiol Biotechnol 30: 47-52 https://doi.org/10.1007/BF00255995
  4. Stephan J, Sokollek CH, Walter PH. 1998. Culture and preservation of vinegar bacteria. J Biotechnol 60: 195-206 https://doi.org/10.1016/S0168-1656(98)00014-5
  5. Sheo HJ, Lee MY, Chung DL. 1990. Effect of Prunus mume extract on gastric secretion in rats and carbon tetrachloride induced liver damage of rabbits. J Korean Soc Food Sci Nutr 19: 21-28
  6. Choi KW. 1992. The effect of Ume's extract on lactate recovery rate after aerobic exercise. Korean J Phys Edu 31: 2327-2333
  7. Song BH, Choi KS, Kim YD. 1997. Changes of physicochemical and flavor components of Ume according to varieties and picking date. Korean J Post-Harvest Sci Technol Agric Products 4: 77-85
  8. Hong SI, Cha HS, Park JD, Jo JS. 1998. Respiratory characteristics of Japanese apricot (Prunus mume Sieb. et Zucc) fruits as influenced by storage temperature and harvesting period. Food Eng Prog 2: 178-182
  9. Park MH, Lee JO, Lee JY, Yu SJ, Ko YJ, Kim YH, Ryu CH. 2005. Isolation and characteristics of acetic acid bacteria for persimmon vinegar fermentation. J Korean Soc Food Sci Nutr 34: 1251-1257 https://doi.org/10.3746/jkfn.2005.34.8.1251
  10. AOAC. 1984. Official Methods Analysis. 14th ed. Association of official analytical chemists, Washington DC. p 10
  11. Ohara I, Ariyoshi S. 1979. Comparison of protein precipitants for the determination of free amino acid in plasma. Agric Biol Chem 43: 1473-1478 https://doi.org/10.1271/bbb1961.43.1473
  12. Jeong YJ, Seo JH, Park NY, Shin SR, Kim KS. 1999. Change in the components of persimmon vinegers by two stages fermentation (II). Korean J Post-Harvest Sci Technol 6: 233-238
  13. Son HJ, Lee OM, Park YK, Lee SJ. 2000. Characteristics of cellulose production by Acetobacter sp. A9 in static culture. Korean J Biotechnol Bioeng 15: 573-577
  14. Park MH, Lyu DK, Ryu CH. 2002. Characteristics of high acidity producing acetic acid bacteria isolated from industrial vinegar fermentation. J Korean Soc Food Sci Nutr 31: 394-398 https://doi.org/10.3746/jkfn.2002.31.3.394
  15. Kim MH, Choi UK. 2006. Acetic acid fermentation by Acetobacter sp. SK-7 using Maesil juice. Korean J Food Culture 21: 420-425
  16. Shim KH, Sung NK, Choi JS, Kang KS. 1989. Changes in major components of Japanese apricot during ripening. J Korean Soc Food Nutr 13: 101-108
  17. Shim KH, Sung NK, Choi JS. 1988. Changes in major components during preparation of apricot wine. J Inst Agr Res Util Gyeongsang Natl Univ 22: 139-147
  18. Ibana A, Nakamura R. 1981. Ripening characteristics of Japanese apricot (Mume, Prunus mume Sieb. et Zucc.) fruits on and off the tree. J Japan Soc Jort Sci 49: 601-607 https://doi.org/10.2503/jjshs.49.601
  19. Cha HS, Hwang JB, Park JS, Park YK, Jo JS. 1999. Changes in chemical composition of Mume (Prunus mume Sieb. et Zucc) fruits during maturation. Korean J Post-Harvest Sci Technol 6: 481-487
  20. Shin JS, Lee OS, Jeong YJ. 2002. Changes in the components of onion vinegars by two stages fermentation. Korean J Post-Harvest Sci Technol 34: 1079-1084

Cited by

  1. Physicochemical Properties of Commercial Fruit Vinegars with Different Fermentation Methods vol.42, pp.5, 2013, https://doi.org/10.3746/jkfn.2013.42.5.736
  2. Quality Characteristics and Antioxidant Activity of Vinegar Supplemented Added with Akebia quinata Fruit during Fermentation vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1217
  3. The Fermentation Analysis of Mungyeong Green Apple vol.19, pp.4, 2016, https://doi.org/10.21289/KSIC.2016.19.4.231
  4. Chemical Characteristics and Immuno-Stimulatory Activity of Polysaccharides from Fermented Vinegars Manufactured with Different Raw Materials vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.191
  5. Production of Vinegar using Rubus coreanus and Its Antioxidant Activities vol.19, pp.4, 2012, https://doi.org/10.11002/kjfp.2012.19.4.594
  6. Optimization of the Acetic Acid Fermentation for Aronia Vinegar using Response Surface Methodology vol.30, pp.6, 2014, https://doi.org/10.9724/kfcs.2014.30.6.792
  7. Quality Characteristics and Biological Activities of Vinegars Added with Young Leaves of Akebia quinata vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.989
  8. Quality Characteristics and Anti-Diabetic Effect of Yacon Vinegar vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.079
  9. Quality Characteristics of Apple Vinegar by Agitated and Static Cultures vol.39, pp.2, 2010, https://doi.org/10.3746/jkfn.2010.39.2.308
  10. Manufacture and quality evaluation of purple sweet potato Makgeolli vinegar using a 2-stage fermentation vol.23, pp.4, 2014, https://doi.org/10.1007/s10068-014-0156-7
  11. Comparison of characteristics in commercial fermented vinegars made with different ingredients vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.482
  12. Development of Functional Vinegar by Using Cucumbers vol.41, pp.7, 2012, https://doi.org/10.3746/jkfn.2012.41.7.927
  13. Monitoring on Alcohol Fermentation Properties of Apple Juice for Apple Vinegar vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.986
  14. Manufacture of the Red Ginseng Vinegar Fermented with Red Ginseng Concentrate and Rice Wine, and its Quality Evaluation vol.44, pp.2, 2012, https://doi.org/10.9721/KJFST.2012.44.2.179
  15. Quality Characteristics of Vinegar Added with Different Levels of Black Garlic vol.32, pp.1, 2016, https://doi.org/10.9724/kfcs.2016.32.1.16
  16. 고추냉이 잎으로 제조한 식초의 품질 특성 연구 vol.21, pp.6, 2007, https://doi.org/10.20878/cshr.2015.21.6.021
  17. 레몬그라스 식초의 초산발효 특성과 항산화 활성 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.680
  18. 당근식초의 췌장 라이페이스 저해활성 및 항산화 활성 vol.33, pp.2, 2007, https://doi.org/10.7841/ksbbj.2018.33.2.104
  19. Effects of Soaking and Fermentation Time on Biogenic Amines Content of Maesil (Prunus Mume) Extract vol.8, pp.11, 2007, https://doi.org/10.3390/foods8110592
  20. Isolation and identification of squalene as an antioxidative compound from the fruits of Prunus mume vol.45, pp.10, 2007, https://doi.org/10.1111/jfpp.15810
  21. Processing and Quality Characteristics of High Value-added Low-salt Fermented Sea Squirt Halocynthia roretzi with Maesil Extracts vol.33, pp.5, 2007, https://doi.org/10.13000/jfmse.2021.10.33.5.1065