DOI QR코드

DOI QR Code

INTEGRATED RAY TRACING MODEL FOR END-TO-END PERFORMANCE VERIFICATION OF AMON-RA INSTRUMENT

AMON-RA 광학계를 활용한 통합적 광선 추적 기법의 지구 반사율 측정 성능 검증

  • 이재민 (연세대학교 천문우주학과) ;
  • 박원현 (연세대학교 천문우주학과) ;
  • 함선정 (연세대학교 천문우주학과) ;
  • 이현수 (연세대학교 천문우주학과) ;
  • 윤지연 (연세대학교 천문우주학과) ;
  • 김석환 (연세대학교 천문우주학과) ;
  • 최기혁 (한국항공우주연구원) ;
  • 김진철 (한국항공우주연구원) ;
  • Published : 2007.03.10

Abstract

The international EARTHSHINE mission is to measure 1% anomaly of the Earth global albedo and total solar irradiance using Amon-Ra instrument around Lagrange point 1. We developed a new ray truing based integrated end-to-end simulation tool that overcomes the shortcomings of the existing end-to-end performance simulation techniques. We then studied the in-orbit radiometric performance of the breadboard Anon-Ra visible channel optical system. The TSI variation and the Earth albedo anomaly, reported elsewhere, were used as the key input variables in the simulation. The output flux at the instrument focal plane confirms that the integrated ray tracing based end-to-end science simulation delivers the correct level of incident power to the Amon-Ra instrument well within the required measurement error budget of better than ${\pm}0.28%$. Using the global angular distribution model (ADM), the incident flux is then used to estimate the Earth global albedo and the TSI variation, confirming the validity of the primary science cases at the L1 halo orbit. These results imply that the integrated end-to-end ray tracing technique, reported here, can serve as an effective and powerful building block of the on-line science analysis tool in support of the international EARTHSHINE mission currently being developed.

Earth-Sun-Heliosphere Interactions Experiments(EARTHSHINE) 미션의 주 탑재체인 Albedo Monitor and Radiometer(Amon-Ra) 광학계는 최초로 제1 라그랑제 지점(Lagrange point 1) 주위의 혜일로(Halo) 궤도에 위치하여 태양 복사 활동 및 지구 반사율 변화를 1% 정확도 이내로 측정함으로서 현존하는 지구 반사율 추이의 모순을 해결할 수 있는 과학적 측정 자료를 제시하는데 그 목적을 가지고 있다. 이에 이미 개발된 광학 성능 검증용 Amon-Ra 광학계의 가시광채널 시험 모델 및 광선 추적 기법을 이용한 통합적 광선 추적 end-to-end 과학 임무 성능 평가 수치 모사 기법을 확립하였으며, 개발된 기법을 이용하여 실제 제작된 Amon-Ra 광학계를 제1라그랑제 지점에 위치시키고 태양과 지구 밝기를 다양하게 변화시킨 후 광학계에 입사되는 에너지 복사량을 수치 모사로 측정하였다. 관측된 지구 및 태양 밝기로부터 지구 반사율 변환을 위하여 각 분포 모델(GLobal Angular Distribution Model, ADM)을 이용하였으며 수치 모사에 의한 지구 반사율 측정 결과를 Amon-Ra 광학계의 측정 오차 범위인 ${\pm}0.28%$와 비교함으로서 개발된 end-to-end 성능 검증 기법의 계산 정밀도를 확인하였다. 이는 기존의 광학계 성능 검증법의 한계를 뛰어넘어 광학계 성능 평가를 실시간으로 검증할 수 있다는 점에서 큰 의의를 지닌다.

Keywords

References

  1. 박원현, 김성희, 이한신, 인현수, 이재민, 함선정, 윤지연, 김석환, 양호순, 최기혁, 김진철, Lockwood, M., Morris, N., & Tosh, I. 2007, 한국우주과학회지, 24, 79 https://doi.org/10.5140/JASS.2007.24.1.079
  2. Crooks, S. 2004, PhD Thesis, Oxford University
  3. Crowther, B. G. & Wassom, S. R. 2004, in Novel Optical Systems Design and Optimization VII, vol.5524, eds. J. M. Sasian, R. J. Koshel, P. K. Manhart, & R. C. Juergens (Bellingham, WA: SPIE), p.196
  4. Fitzmaurice, M. W., Ha, K. Q., Le, C., & Howard, J. M. 2005, Optical Modeling and Performance Predictions II, vol.5867, ed. M. A. Kahan (Bellingham, WA: SPIE), p.257
  5. Friis-Christensen, E. & Lassen, K. 1991, Science, 254, 698 https://doi.org/10.1126/science.254.5032.698
  6. Goode, P. R., Qiu, J., Yurchyshyn, V., Hickey, J., Chu, M. C., Kolbe, E., Brown, C. T., & Koonin, S. E. 2001, Geophysical Research Letters, 28, 1671 https://doi.org/10.1029/2000GL012580
  7. Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., & Wood, R. A. 2000, Climate Dynamics, 16, 147 https://doi.org/10.1007/s003820050010
  8. Gray, L. J., Dunkerton, S. J., Balwin, M. P., Drysdale, E. F., & Allen, M. R. 2001, Quarterly Journal of the Royal Meteorological Society, 127, 1985 https://doi.org/10.1002/qj.49712757607
  9. Haigh, J. D. 2003, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 361, 95 https://doi.org/10.1098/rsta.2002.1111
  10. Hill, D. C., Allen, M. R., & Stott, P. A. 2001, Geophysical Research Letters, 28, 1555 https://doi.org/10.1029/2000GL012209
  11. Labitzke, K., Austin, J., Butchart, N., Knight, J., Takahashi, M., Nakamoto, M., Nagashima, T., Haigh, J. D., & Williams, V. 2001, Journal of Atmospheric and Solar-Terrestrial Physics, 64, 201
  12. Labitzke, K. & van Loon, H. 1997, Space Science Reviews, 80, 393 https://doi.org/10.1023/A:1004907126955
  13. Lean, J., Beer, J., & Bradley, R. 1995, Geophysical Research Letters, 22, 3195 https://doi.org/10.1029/95GL03093
  14. Lean, L. 2000, Geophysical Research Letters, 27, 2425 https://doi.org/10.1029/2000GL000043
  15. Lee, H., Tosh, I., Morris, N., Lockwood, M., & Kim, S.-W. 2005, Optical Design and Testing II, vol. 5638, eds. Y. Wang, Z. Weng, S. Ye, & J. M. Sasian (Bellingham, WA: SPIE), p.248
  16. Levitus, S., Antonov, J. S., Wang, J., Delworth, T. L., Dixon, K. W., & Broccoli, A. J. 2001, Science, 292, 267 https://doi.org/10.1126/science.1058154
  17. Lockwood, M. 2002, A&A, 382, 678 https://doi.org/10.1051/0004-6361:20011666
  18. Lockwood, M., Morris, N., Smith, M. F., Haigh, J. D., Waltham, N. R., Russell, J., Barnett, J., Allen, M. R., Crooks, S., Coates, A. J., James, A., Fazakerley, A. N., Owen, C. J., Harra, L., Horbury, T., Carr, C., Cargill, P., Castelli, C., Kirkby, J., Rouillard, A., Eyles, C., Goode, P., Stott, P., Harrison, R. G., Lean, J. L., Wang, Y. M., Harrison, R. A., Carslaw, K., Baran, A., Gray, L., Loeb, N., Hobbs, S., Ward, R., & Chalenor, C. 2004a, Proposal of Earth-Sun-Heliosphere Interactions Experiment A. Science Case, p.5, pp.25-27, pp.55-57
  19. Lockwood, M., Morris, N., Smith, M. F., Haigh, J. D., Waltham, N. R., Russell, J., Barnett, J., Allen, M. R., Crooks, S., Coates, A. J., James, A., Fazakerley, A. N., Owen, C. J., Harra, L., Horbury, T., Carr, C., Cargill, P., Castelli, C., Kirkby, J., Rouillard, A., Eyles, C., Goode, P., Stott, P., Harrison, R. G., Lean, J. L., Wang, Y. M., Harrison, R. A., Carslaw, K., Baran, A., Gray, L., Loeb, N., Hobbs, S., Ward, R., & Chalenor, C. 2004b, Proposal of Earth-Sun-Heliosphere Interactions Experiment B. Instrument & Work Package Desciptions, p.5
  20. Marsh, N. & Svensmark, H. 2003, Space Science Reviews, 107, 317 https://doi.org/10.1023/A:1025573117134
  21. Miller, S. W. & Bergen, W. R. 2004, Atmospheric and Environmental Remote Sensing Data Processing and Utilization: an End-to-End System Perspective, vol.5548, eds. H.-L. A. Huang, & H. J. Bloom (Bellingham, WA: SPIE), p.380
  22. Palle, E., Goode, P. R., Montanes-Rodriguez, P., & Koonin, S. E. 2004, Science, 304, 1299 https://doi.org/10.1126/science.1094070
  23. Palle, E., Goode, P. R., Yurchyshyn, V., Qiu, J., Hickey, J., Montanes-Rodriguez, P., Chu, M-C., Kolbe, E., Brown., C. T., & Koonin, S. E. 2003, JGR, 108, 4710 https://doi.org/10.1029/2003JD003611
  24. Pope, V. D., Gallani, M. L., Rowntree, P. R., & Stratton, R. A. 2000, Climate Dynamics, 16, 123 https://doi.org/10.1007/s003820050009
  25. Raval, A. & Ramanathan, V. 1989, Nature, 342, 758 https://doi.org/10.1038/342758a0
  26. Reid, G. C. 1987, Nature, 329, 142 https://doi.org/10.1038/329142a0
  27. Schonhoff, U., Eisentriiger, P., Wandner, K., Karcher, H., & Nordmann, R. 2000, In Airborne Telescope Systems, vol.4014, eds. R. K. Melugin & H.-P. Roser (Bellingham, WA: SPIE), p.380
  28. Svensmark, H. & Friis-Christensen, E. 1997, Journal of Atmospheric Terrestrial Physics, 59, 1225 https://doi.org/10.1016/S1364-6826(97)00001-1
  29. White, W. B., Lean, J., Cayan, D. R., & Dettinger, M. D. 1997, JGR, 102, 3255 https://doi.org/10.1029/96JC03549
  30. Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., Smith, G. L., & Cooper, J. E. 1996, Bulletin of the American Meteorological Society, 77, 853 https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
  31. Wielicki, B. A., Wong, T., Loeb, N., Minnis, P., Priestly, K., & Kandel, R. 2005, Science, 308, 825 https://doi.org/10.1126/science.1106484

Cited by

  1. New earth system model for optical performance evaluation of space instruments vol.25, pp.5, 2017, https://doi.org/10.1364/OE.25.004926
  2. Integrated Ray Tracing simulation of the SCOTS surface measurement test for the GMT Fast Steering Mirror Prototype vol.56, pp.11, 2015, https://doi.org/10.1016/j.asr.2015.09.017