DOI QR코드

DOI QR Code

전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)

  • 강지훈 (국민대학교, 나노 전자 물리학과) ;
  • 전수진 (양자 광기능물성 연구센터(q-Psi), 한양대학교 물리학과) ;
  • 박정수 (양자 광기능물성 연구센터(q-Psi), 한양대학교 물리학과) ;
  • 이영백 (양자 광기능물성 연구센터(q-Psi), 한양대학교 물리학과) ;
  • 이연승 (국립 한밭대학교, 정보통신공학)
  • Kang, J.H. (Department of Nano and Electronic Physics, Kookmin University) ;
  • Jun, S.J. (Quantum Photonic Science Research Center and Department of Physics, Hanyang University) ;
  • Park, J.S. (Quantum Photonic Science Research Center and Department of Physics, Hanyang University) ;
  • Lee, Y.P. (Quantum Photonic Science Research Center and Department of Physics, Hanyang University) ;
  • Lee, Y.S. (Division of Information Communication and Computer Engineering, Hanbat National University)
  • 발행 : 2007.02.28

초록

고상 반응법을 써서 전이금속(Cr, Ti)을 치환한 란탄칼슘망간산화물, $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$의 자성특성을 연구하였다. 자성 특성은 VSM을 써서 측정하였고, 50 Oe에서 zero field cooling과 field cooling을 하면서, 자화-온도측정을 Cr과 Ti 치환한 경우에 측정하였다. $La_{0.5}Ca_{0.5}(Mn_{0.98}Cr_{0.02})O_3$는 클러스터 또는 스핀유리와 유사한 거동을 보였으며, $La_{0.5}Ca_{0.5}(Mn_{0.98}Ti_{0.02})O_3$에서는 관찰되지 않았다. 큐리온도는 전이금속이 치환된 시편의 경우 란탄칼슘망간산화물 $La_{0.5}Ca_{0.5}MnO_3$의 큐리온도 245.5K에서 감소한, 235.5 K [$La_{0.5}Ca_{0.5}(Mn_{0.98}Cr_{0.02})O_3$], 232.7 K [$La_{0.5}Ca_{0.5}(Mn_{0.98}Ti_{0.02})O_3$]로 모두 감소하였다. 자벽 고정(domain wall pinning)을 알아보기 위해 온도에 따른 보자력 측정을 하였고, 이 결과를 defect와 자벽 간의 상호작용의 관점으로 해석하였다.

Magnetic properties of transition metal doped $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity $H_c(T)$ was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.

키워드

참고문헌

  1. L. Righi, P. Gorria, M. Insausti, and J. Gutierrez, J. M. Barandiran, J. Appl. Phys., 81, 5767 (1997) https://doi.org/10.1063/1.364721
  2. Y.-H. Liu, B.-X. H., R.-Z. Zhang, X.-B. Yuan, C.-J. Wang, and L.-M. Mei, J. Magn. Magn. Mater., 269, 398 (2001)
  3. N. Kallel, G. Dezanneau, J. Dhahri, M. Oumezzine, and H. Vincent, J. Magn. Magn. Mater., 261, 56 (2003) https://doi.org/10.1016/S0304-8853(02)01413-0
  4. Y. H. Huang, C. S. Liao, Z. M. Wang, X. H. Li, and C. H. Yan, Phys. Rev. B, 65, 184423 (2002) https://doi.org/10.1103/PhysRevB.65.184423
  5. D. Cao, F. Bridges, M. Anderson, A. P. Ramirez, M. Olapinski, M. A. Subramanian, C. H. Booth, and G. H. Kwei, Phys. Rev.B, 64, 184409 (2001) https://doi.org/10.1103/PhysRevB.64.184409
  6. L. Righi, P. Gorria, M. Insausti, J. Gutierrez, and J. M. Barandiaran, J. Appl. Phys., 81, 5767 (1997) https://doi.org/10.1063/1.364721
  7. T. W. Noh, J. H. Jung, H. J. Lee, K. H. Kim, J. Yu, E. J. Choi, and Y. Moritomo, J. Kor. Phys. Soc., 36, 392 (2000)
  8. A. H. Morrish, The Physical Principles of Magnetism, IEEE Press, NewYork (2001), pp. 46-77
  9. J. B. Hong, T. Park, and Y. S. Kwon, J. Korean Phys. Soc., 47, 479 (2005)
  10. D. J. Fu, J. C. Lee, and T. W. Kang, J. Korean Phys. Soc., 45, 633 (2004)
  11. Y. Sun, W. Tong, X. Xu, and Y. Zhang, Appl. Phys. Lett., 78, 643 (2001) https://doi.org/10.1063/1.1344229
  12. J. A. Mydosh, Spin Glass: An Experimental Introduction, Taylor and Francis, London (1993)
  13. S. M. Mukherjee, R. Ranganathan, P. S. Anikkumar, and P. A. Joy, Phys. Rev. B, 54, 9267 (1996) https://doi.org/10.1103/PhysRevB.54.9267
  14. S. K. Hasanain, W. H. Shah, A. Mumataz, M. Nadeem, and M. J. Akhtar, J. Magn. Magn. Mater., 271, 79 (2004) https://doi.org/10.1016/j.jmmm.2003.09.020
  15. A. K. Pradhan, Y. Feng, B. K. Roul, D. R. Sahu, and M. Nuralidhar, J. Phys. Condens. Matter., 14, 10323 (2002) https://doi.org/10.1088/0953-8984/14/43/328
  16. H. L. Ju and H. Shon, J. Magn. Magn. Mater., 167, 200 (1997) https://doi.org/10.1016/S0304-8853(96)00647-6
  17. Y. Shimakawa, T. Numata, and J. Tabuchi, J. Solid State Chem., 131, 138 (1997) https://doi.org/10.1006/jssc.1997.7366
  18. H. Song, W. Kim, S. J. Kwon, and J.-S. Kang, J. Appl. Phys., 89, 3398 (2001)
  19. A. Banerjee, S. Pal, and B. K. Chaudhuri, J. Chem. Phys., 115, 1550 (2001) https://doi.org/10.1063/1.1378018
  20. P. Gaunt, J. Appl. Phys., 55, 1671 (1984) https://doi.org/10.1063/1.333438
  21. S. H. Huang and T. S. Chin, J. Appl. Phys., 70, 4439 (1991) https://doi.org/10.1063/1.349128