DOI QR코드

DOI QR Code

Traffic Sign Area Detection System Based on Color Processing Mechanism of Human

인간의 색상처리방식에 기반한 교통 표지판 영역 추출 시스템

  • 최경주 (충북대학교 전기전자컴퓨터공학부) ;
  • 박민철 (한국과학기술연구원 시스템연구부)
  • Published : 2007.02.28

Abstract

The traffic sign on the road should be easy to distinguishable even from far, and should be recognized in a short time. As traffic sign is a very important object which provides important information for the drivers to enhance safety, it has to attract human's attention among any other objects on the road. This paper proposes a new method of detecting the area of traffic sign, which uses attention module on the assumption that we attention our gaze on the traffic sign at first among other objects when we drive a car. In this paper, we analyze the previous studies of psycophysical and physiological results to get what kind of features are used in the process of human's object recognition, especially color processing, and with these results we detected the area of traffic sign. Various kinds of traffic sign images were tested, and the results showed good quality(average 97.8% success).

교통 표지판은 먼거리에서도 교통 표지라는 것을 쉽게 판별하여 단시간 내에 그 내용을 파악할 수 있어야 한다. 교통 표지판의 도로의 안전 주행에 있어 아주 중요한 객체로 도로 상의 다른 그 무엇보다도 먼저 인간의 시선을 잡아끌어야 한다. 이에 본 논문에서는 인간의 도로 상의 어떤 물체보다도 교통 표지판에 가장 먼저 시선을 집중한다는 가정하에 주의 모듈(Attention Module)을 사용하여 교통 표지판 영역을 추출하는 시스템을 제안하고자 한다. 특히 본 논문에서는 인간의 대상(object)인식과정, 특히 색상처리과정에서 어떠한 특징들이 사용되어지는지를 기존의 정신물리학적, 생리학적 실험결과를 통해 분석하였고, 이 분석결과를 통해 얻어진 특징들을 사용하여 교통 표지판 영역을 추출하였다. 실제 도로위에서 찍은 실영상을 대상으로 실험하였으며, 실험을 통하여 평균 97.8%의 탐지율을 보임을 확인하였다.

Keywords

References

  1. H Akasuka and S. Imai, "Road signposts recognition system," Proc. of SAE vehide highway infrastructure : safety compatibility,pp.189-196, 1987
  2. R. Ghica, S. W. Lu, and X. Yuan, "Recongnition of traffic signs using a multilayer Neural network," Proc. of Canadian Conf. on Electrical and Computer Engineering, 1994.
  3. N. Kehtamavaz, N. C. Griswold, and D. S. Kang, "stopsign recongnition based on color-shape processing," Machine Vision and Applications, Vol.6, pp.206-208, 1993. https://doi.org/10.1007/BF01212298
  4. Y. Aoyagi and T. Asakura, "A study on traffic sign recognition in scene imaage using genetic algorithm and neural networks," Proc. of IEEE Conf. on Industrial electronics, Control and Instrumentation, pp.1838-1843, 1996
  5. J. H. An and T. Y. Choi, "Dominant Color Transform and Circular Pattem vector for traffic Sign Detection and Recognition," IEICE Trans. on Fundamentals of Electronics Communications and Computer Vol.E81, No.6, pp.1128-1135, 1998.
  6. A Clark, "Some Logical Features of Feature Integration," In augural lecture for the ltalian Institute for Philosophical Studies, Intemational School of Biophysics Study Program "From Neuron Coding to Consciousness," Ischia(Naples), pp.12-17, 1998.
  7. R. Anderson, L. Snyder, D. Bradley, and J. Xing, "Multimodal Representation of Space in the Posterior Parietal Cortex and Its Use in Planning Movements," Annual ReviewNeuroscience, Vol.20, pp.303-330, 1997.
  8. K Cave, "The FeatureGate Model of Visual Selection," Psychological Research, pp.182-194,1999
  9. L. Itti, C. Koch, and E. Niebur, "Model of saliency-based visual attention for rapid scene analysis," IEEE Trans. on Pattem Analysis and Machine Intelligence, vol.20, No.11, pp.1254-1259,1998. https://doi.org/10.1109/34.730558
  10. R Anderson, L. Snyder, D. Bradley, and J. Xing, " Multimodal representation of space in the Posterior,Parietal Cortex and Its Use in Planning Movements," Annual Review Neuroscience, Vol.20, pp.303-330, 1997. https://doi.org/10.1146/annurev.neuro.20.1.303
  11. W. Osberger and A Maeder, "Autαnatic identification of Perceptually important regions in an image," Proc. of Fourteenth Intl. Conf. on Pattem Recognition, Vol.1,pp.701-704, 1998.
  12. 최경주, 이일병, "추출된 특정의 통계적 정보와 국부적 경쟁력을 이용한 컬러영상에서의 돌출맵 모형" 한국 뇌학회 논문집, 제2권, 제1호, 2002.