참고문헌
- S. Mukherjee, P. Tamayo, S. Rogers, R. Rifkin, A. Engle, C. Campbell, T. Golub and J. Mesirov, 'Estimating dataset size requirements for classifying DNA microarray data', Journal of Computational Biology, vol. 10, pp. 119-142, 2003 https://doi.org/10.1089/106652703321825928
- L. Xu, A. Tan, D. Naiman, D. Geman and R. Winslow, 'Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data', Bioinformatics, vol. 21, pp. 3905-3911, 2005 https://doi.org/10.1093/bioinformatics/bti647
- J. K. Choi, U. Yu, S. Kim and O. J. Yoo, 'Combining multiple microarray studies and modeling interstudy variation', Bioinformatics, vol. 19, pp. 84-90, 2003 https://doi.org/10.1093/bioinformatics/btg1010
- H. Jiang, Y. Deng, H.S. Chen, L. Tao, Q. Sha and J. Chen, 'Joint analysis of two microarray geneexpression data sets to select lung adenocarcinoma marker genes,' BMC Bioinformatics, vol. 5, pp. 81-92, 2004 https://doi.org/10.1186/1471-2105-5-81
- J. Kang, J. Yang, W. Xu, and P. Chopra, 'Integrating heterogeneous microarray data sources using correlation signatures,' In International Workshop on Data Integration in the Life Sciences (DILS), 2005
- S. Dudoit and J. Fridlyand, 'Classication in microarray experiments,' Statistical Analysis of Gene Expression Microarray Data, Chapman and Hall, 2003
- C. Tang, A. Zhang and J. Pei, 'Mining Phenotypes and Informative Genes from Gene Expression Data,' ACM SIGKDD, pp. 24-27, Washington, DC, USA, August 2003
- A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer and Z. Yakhini, 'Tissue classification with gene expression profiles,' Journal of Computational Biology, vol. 7, pp. 559-583, 2000 https://doi.org/10.1089/106652700750050943
- C. Bishop, 'Neural networks for pattern recognition,' Oxford University Press, New York, 1995
- T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Collier, M. L. Loh, J. R. Downing and M. A. Caligiuri, 'Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,' Science, vol. 286, pp. 531-537, 1999 https://doi.org/10.1126/science.286.5439.531
- P. J. Park, M. Pagano and M. Bonetti, 'A nonparametric scoring algorithm for identifying informative genes from microarray data,' Pacific Symposium on Biocomputing, pp. 52-63, 2001
- I. H. Witten, and E. Frank, 'Data mining: practical machine learning tools and techniques with Java implementations,' Morgan Kaufmann, 1999
- M. Robnik-Sikonja, and I. Kononenko, 'Theoretical and empirical analysis of ReliefF and RReliefF,' Machine Learning, vol. 53, pp.23-69, 2003 https://doi.org/10.1023/A:1025667309714
- N. Bailey, 'Statistical methods in biology,' Cambridge university press, 1995
- C. C. Chang and C. J. Lin, 'LIBSVM: a library for support vector machine,' 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm
- V. Vapnik, 'Statistical Learning Theory,' John Wiley & Sons, New York, 1999
- B. Dasarathy, 'Nearest Neighbor Norms: NN Pattern Classification Techniques,' IEEE Computer Society Press, Los Alamitos, CA, USA. 1991
- A. Tan, D. Naiman, L. Xu, R. Winslow and D. Geman. 'Simple decision rules for classifying human cancers from gene expression profiles,' Bioinformatics, vol. 21, pp. 3896-3904, 2005 https://doi.org/10.1093/bioinformatics/bti631
- D. Singh, P. G. Febbo, K. Ross,D. G. Jackson, J. Manola and C. Ladd, 'Gene expression correlates of clinical prostate cancer behavior,' Cancer Cell, vol. 1, pp. 203-209, 2002 https://doi.org/10.1016/S1535-6108(02)00030-2
- J. B. Welsh, L. M. Sapinoso, A. I. Su, S. G. Kern, J. Wang-Rodriguez and C. A. Moskaluk, 'Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer', Cancer Res., vol. 61, pp. 5974-5978, 2001
- E. LaTulippe, J. Satagopan, A. Smith, H. Scher, P. Scardino and V. Reuter, 'Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease,' Cancer Res, vol. 62, pp. 4499-4506, 2002
- L. Li, W. Leping, C. R. Weinberg, T. A. Darden and L. G. Pedersen, 'Gene Selection for Sample Classification Based on Gene Expression Data: Study of Sensitivity to Choice of Parameters of the ga/knn Method,' Bioinformatics, vol. 17, pp. 1131-1142, 2001 https://doi.org/10.1093/bioinformatics/17.12.1131